Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311092402> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4311092402 endingPage "107290" @default.
- W4311092402 startingPage "107290" @default.
- W4311092402 abstract "There is a noticeable gap in diagnostic evidence strength between the thick and thin scans of Low-Dose CT (LDCT) for pulmonary nodule detection. When the thin scans are needed is unknown, especially when aided with an artificial intelligence nodule detection system.A case study is conducted with a set of 1,000 pulmonary nodule screening LDCT scans with both thick (5.0mm), and thin (1.0mm) section scans available. Pulmonary nodule detection is performed by human and artificial intelligence models for nodule detection developed using 3D convolutional neural networks (CNNs). The intra-sample consistency is evaluated with thick and thin scans, for both clinical doctor and NN (neural network) models. Free receiver operating characteristic (FROC) is used to measure the accuracy of humans and NNs.Trained NNs outperform humans with small nodules < 6.0mm, which is a good complement to human ability. For nodules > 6.0mm, human and NNs perform similarly while human takes a fractional advantage. By allowing a few more FPs, a significant sensitivity improvement can be achieved with NNs.There is a performance gap between the thick and thin scans for pulmonary nodule detection regarding both false negatives and false positives. NNs can help reduce false negatives when the nodules are small and trade off the false negatives for sensitivity. A combination of human and trained NNs is a promising way to achieve a fast and accurate diagnosis." @default.
- W4311092402 created "2022-12-23" @default.
- W4311092402 creator A5009001830 @default.
- W4311092402 creator A5010628252 @default.
- W4311092402 creator A5012440924 @default.
- W4311092402 creator A5015628950 @default.
- W4311092402 creator A5019373631 @default.
- W4311092402 creator A5030978586 @default.
- W4311092402 creator A5033634394 @default.
- W4311092402 creator A5067227989 @default.
- W4311092402 creator A5071656221 @default.
- W4311092402 creator A5077423550 @default.
- W4311092402 creator A5080431093 @default.
- W4311092402 creator A5088132899 @default.
- W4311092402 creator A5091066995 @default.
- W4311092402 date "2023-02-01" @default.
- W4311092402 modified "2023-09-23" @default.
- W4311092402 title "The Gap in the Thickness: Estimating Effectiveness of Pulmonary Nodule Detection in Thick- and Thin-Section CT Images with 3D Deep Neural Networks" @default.
- W4311092402 cites W1757407923 @default.
- W4311092402 cites W2100495367 @default.
- W4311092402 cites W2102605133 @default.
- W4311092402 cites W2194775991 @default.
- W4311092402 cites W2322371438 @default.
- W4311092402 cites W2327261103 @default.
- W4311092402 cites W2557738935 @default.
- W4311092402 cites W2581082771 @default.
- W4311092402 cites W2584017349 @default.
- W4311092402 cites W2594318146 @default.
- W4311092402 cites W2769848455 @default.
- W4311092402 cites W2788633781 @default.
- W4311092402 cites W639708223 @default.
- W4311092402 doi "https://doi.org/10.1016/j.cmpb.2022.107290" @default.
- W4311092402 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36502546" @default.
- W4311092402 hasPublicationYear "2023" @default.
- W4311092402 type Work @default.
- W4311092402 citedByCount "0" @default.
- W4311092402 crossrefType "journal-article" @default.
- W4311092402 hasAuthorship W4311092402A5009001830 @default.
- W4311092402 hasAuthorship W4311092402A5010628252 @default.
- W4311092402 hasAuthorship W4311092402A5012440924 @default.
- W4311092402 hasAuthorship W4311092402A5015628950 @default.
- W4311092402 hasAuthorship W4311092402A5019373631 @default.
- W4311092402 hasAuthorship W4311092402A5030978586 @default.
- W4311092402 hasAuthorship W4311092402A5033634394 @default.
- W4311092402 hasAuthorship W4311092402A5067227989 @default.
- W4311092402 hasAuthorship W4311092402A5071656221 @default.
- W4311092402 hasAuthorship W4311092402A5077423550 @default.
- W4311092402 hasAuthorship W4311092402A5080431093 @default.
- W4311092402 hasAuthorship W4311092402A5088132899 @default.
- W4311092402 hasAuthorship W4311092402A5091066995 @default.
- W4311092402 hasConcept C112789634 @default.
- W4311092402 hasConcept C119857082 @default.
- W4311092402 hasConcept C151730666 @default.
- W4311092402 hasConcept C153180895 @default.
- W4311092402 hasConcept C154945302 @default.
- W4311092402 hasConcept C2776731575 @default.
- W4311092402 hasConcept C41008148 @default.
- W4311092402 hasConcept C50644808 @default.
- W4311092402 hasConcept C58471807 @default.
- W4311092402 hasConcept C64869954 @default.
- W4311092402 hasConcept C81363708 @default.
- W4311092402 hasConcept C86803240 @default.
- W4311092402 hasConceptScore W4311092402C112789634 @default.
- W4311092402 hasConceptScore W4311092402C119857082 @default.
- W4311092402 hasConceptScore W4311092402C151730666 @default.
- W4311092402 hasConceptScore W4311092402C153180895 @default.
- W4311092402 hasConceptScore W4311092402C154945302 @default.
- W4311092402 hasConceptScore W4311092402C2776731575 @default.
- W4311092402 hasConceptScore W4311092402C41008148 @default.
- W4311092402 hasConceptScore W4311092402C50644808 @default.
- W4311092402 hasConceptScore W4311092402C58471807 @default.
- W4311092402 hasConceptScore W4311092402C64869954 @default.
- W4311092402 hasConceptScore W4311092402C81363708 @default.
- W4311092402 hasConceptScore W4311092402C86803240 @default.
- W4311092402 hasFunder F4320321540 @default.
- W4311092402 hasFunder F4320335777 @default.
- W4311092402 hasLocation W43110924021 @default.
- W4311092402 hasLocation W43110924022 @default.
- W4311092402 hasOpenAccess W4311092402 @default.
- W4311092402 hasPrimaryLocation W43110924021 @default.
- W4311092402 hasRelatedWork W1168915167 @default.
- W4311092402 hasRelatedWork W2086871282 @default.
- W4311092402 hasRelatedWork W2135287337 @default.
- W4311092402 hasRelatedWork W2767651786 @default.
- W4311092402 hasRelatedWork W2912288872 @default.
- W4311092402 hasRelatedWork W3000645065 @default.
- W4311092402 hasRelatedWork W3012978760 @default.
- W4311092402 hasRelatedWork W3086857729 @default.
- W4311092402 hasRelatedWork W3194451773 @default.
- W4311092402 hasRelatedWork W564581980 @default.
- W4311092402 hasVolume "229" @default.
- W4311092402 isParatext "false" @default.
- W4311092402 isRetracted "false" @default.
- W4311092402 workType "article" @default.