Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311104080> ?p ?o ?g. }
- W4311104080 endingPage "8597" @default.
- W4311104080 startingPage "8597" @default.
- W4311104080 abstract "This paper reports the results of measurements of cutting forces and delamination in drilling of Glass-Fiber-Reinforced Polymer (GFRP) composites. Four different types of GFRP composites were tested, made by a different manufacturing method and had a different fiber type, weight fraction (wf) ratio, number of layers, but the same stacking sequence. GFRP samples were made using two technologies: a novel method based on the use of a specially designed pressing device and hand lay-up and vacuum bag technology process. The study was conducted with variable technological parameters: cutting speed vc and feed per tooth fz. The two-edge carbide diamond-coated drill produced by Seco Company was used in the experiments. Cutting-force components and delamination factor were measured in the experiments, and photos of the holes were taken to determine the delamination. In addition, modeling of cause-and-effect relationships between the technological drilling parameters vc and fz was simulated with the use of artificial neural network modeling. For all tested GFRP materials, an increase in fz led to an increase in the amplitude of cutting-force component Fz. The lowest values of the amplitude of cutting-force component Fz were obtained with the lowest tested feed per tooth value of 0.04 mm/tooth for all tested materials. It was observed that materials produced with the use of the specially designed pressing device were characterized by lower values of the cutting-force component Fz. It was also found that the delamination factor increased with an increase in fz for all tested GFRP materials. A comparison of the lowest and the highest values of fz revealed that the lowest delamination factor increase was archived by the B1 material and amounted to about 12.5%. The error margin of the obtained numerical modeling results does not exceed 15%, so it can be concluded that artificial neural networks are a suitable tool for modeling cutting force amplitudes as a function of vc and fz. The study has shown that the use of the special pressing device during the manufacturing of composite materials has a positive effect on delamination." @default.
- W4311104080 created "2022-12-23" @default.
- W4311104080 creator A5017708166 @default.
- W4311104080 creator A5049615818 @default.
- W4311104080 creator A5072460851 @default.
- W4311104080 creator A5090241104 @default.
- W4311104080 date "2022-12-02" @default.
- W4311104080 modified "2023-09-26" @default.
- W4311104080 title "Experimental Study and Artificial Neural Network Simulation of Cutting Forces and Delamination Analysis in GFRP Drilling" @default.
- W4311104080 cites W1984359065 @default.
- W4311104080 cites W2001545510 @default.
- W4311104080 cites W2019093076 @default.
- W4311104080 cites W2033045262 @default.
- W4311104080 cites W2034820982 @default.
- W4311104080 cites W2074376353 @default.
- W4311104080 cites W2141543570 @default.
- W4311104080 cites W2152090606 @default.
- W4311104080 cites W2342026667 @default.
- W4311104080 cites W2532292860 @default.
- W4311104080 cites W2621776139 @default.
- W4311104080 cites W2733545729 @default.
- W4311104080 cites W2751972438 @default.
- W4311104080 cites W2766701655 @default.
- W4311104080 cites W2789678072 @default.
- W4311104080 cites W2791623259 @default.
- W4311104080 cites W2901608555 @default.
- W4311104080 cites W2922443571 @default.
- W4311104080 cites W2944277626 @default.
- W4311104080 cites W2990864538 @default.
- W4311104080 cites W2995107997 @default.
- W4311104080 cites W2996571437 @default.
- W4311104080 cites W2997252013 @default.
- W4311104080 cites W3011667108 @default.
- W4311104080 cites W3019211926 @default.
- W4311104080 cites W3107468061 @default.
- W4311104080 cites W3126277189 @default.
- W4311104080 cites W3131505303 @default.
- W4311104080 cites W3138140297 @default.
- W4311104080 cites W3182980046 @default.
- W4311104080 cites W3195963369 @default.
- W4311104080 cites W3208083289 @default.
- W4311104080 cites W4281643651 @default.
- W4311104080 cites W4292348088 @default.
- W4311104080 doi "https://doi.org/10.3390/ma15238597" @default.
- W4311104080 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36500093" @default.
- W4311104080 hasPublicationYear "2022" @default.
- W4311104080 type Work @default.
- W4311104080 citedByCount "3" @default.
- W4311104080 countsByYear W43111040802023 @default.
- W4311104080 crossrefType "journal-article" @default.
- W4311104080 hasAuthorship W4311104080A5017708166 @default.
- W4311104080 hasAuthorship W4311104080A5049615818 @default.
- W4311104080 hasAuthorship W4311104080A5072460851 @default.
- W4311104080 hasAuthorship W4311104080A5090241104 @default.
- W4311104080 hasBestOaLocation W43111040801 @default.
- W4311104080 hasConcept C127413603 @default.
- W4311104080 hasConcept C151730666 @default.
- W4311104080 hasConcept C159985019 @default.
- W4311104080 hasConcept C162307627 @default.
- W4311104080 hasConcept C173736775 @default.
- W4311104080 hasConcept C177229083 @default.
- W4311104080 hasConcept C191897082 @default.
- W4311104080 hasConcept C192562407 @default.
- W4311104080 hasConcept C25197100 @default.
- W4311104080 hasConcept C2776921476 @default.
- W4311104080 hasConcept C30239060 @default.
- W4311104080 hasConcept C41008148 @default.
- W4311104080 hasConcept C58097730 @default.
- W4311104080 hasConcept C66938386 @default.
- W4311104080 hasConcept C76155785 @default.
- W4311104080 hasConcept C76344452 @default.
- W4311104080 hasConcept C77928131 @default.
- W4311104080 hasConcept C86803240 @default.
- W4311104080 hasConcept C93021684 @default.
- W4311104080 hasConceptScore W4311104080C127413603 @default.
- W4311104080 hasConceptScore W4311104080C151730666 @default.
- W4311104080 hasConceptScore W4311104080C159985019 @default.
- W4311104080 hasConceptScore W4311104080C162307627 @default.
- W4311104080 hasConceptScore W4311104080C173736775 @default.
- W4311104080 hasConceptScore W4311104080C177229083 @default.
- W4311104080 hasConceptScore W4311104080C191897082 @default.
- W4311104080 hasConceptScore W4311104080C192562407 @default.
- W4311104080 hasConceptScore W4311104080C25197100 @default.
- W4311104080 hasConceptScore W4311104080C2776921476 @default.
- W4311104080 hasConceptScore W4311104080C30239060 @default.
- W4311104080 hasConceptScore W4311104080C41008148 @default.
- W4311104080 hasConceptScore W4311104080C58097730 @default.
- W4311104080 hasConceptScore W4311104080C66938386 @default.
- W4311104080 hasConceptScore W4311104080C76155785 @default.
- W4311104080 hasConceptScore W4311104080C76344452 @default.
- W4311104080 hasConceptScore W4311104080C77928131 @default.
- W4311104080 hasConceptScore W4311104080C86803240 @default.
- W4311104080 hasConceptScore W4311104080C93021684 @default.
- W4311104080 hasIssue "23" @default.
- W4311104080 hasLocation W43111040801 @default.
- W4311104080 hasLocation W43111040802 @default.
- W4311104080 hasLocation W43111040803 @default.
- W4311104080 hasLocation W43111040804 @default.