Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311111489> ?p ?o ?g. }
- W4311111489 endingPage "3996" @default.
- W4311111489 startingPage "3996" @default.
- W4311111489 abstract "Congestive heart failure (CHF) is one of the most debilitating cardiac disorders. It is a costly disease in terms of both lives and financial outlays, given the high rate of hospital re-admissions and mortality. Heart failure (HF) is notoriously difficult to identify on time, and is frequently accompanied by additional comorbidities that further complicate diagnosis. Many decision support systems (DSS) have been developed to facilitate diagnosis and to raise the standard of screening and monitoring operations, even for non-expert staff. This is confirmed in the literature by records of highly performing diagnosis-aid systems, which are unfortunately not very relevant to expert cardiologists. In order to assist cardiologists in predicting the trajectory of HF, we propose a deep learning-based system which predicts severity of disease progression by employing medical patient history. We tested the accuracy of four models on a labeled dataset, composed of 1037 records, to predict CHF severity and progression, achieving results comparable to studies based on much larger datasets, none of which used longitudinal multi-class prediction. The main contribution of this work is that it demonstrates that a fairly complicated approach can achieve good results on a medium size dataset, providing a reasonably accurate means of determining the evolution of CHF well in advance. This potentially constitutes a significant aid for healthcare managers and expert cardiologists in designing different therapies for medication, healthy lifestyle changes and quality of life (QoL) management, while also promoting allocation of resources with an evidence-based approach." @default.
- W4311111489 created "2022-12-23" @default.
- W4311111489 creator A5022989784 @default.
- W4311111489 creator A5048583491 @default.
- W4311111489 creator A5056345850 @default.
- W4311111489 creator A5072282430 @default.
- W4311111489 date "2022-12-02" @default.
- W4311111489 modified "2023-10-01" @default.
- W4311111489 title "Deep Learning for Predicting Congestive Heart Failure" @default.
- W4311111489 cites W1885841701 @default.
- W4311111489 cites W1978709382 @default.
- W4311111489 cites W1981438457 @default.
- W4311111489 cites W2035510150 @default.
- W4311111489 cites W2045148662 @default.
- W4311111489 cites W2120312774 @default.
- W4311111489 cites W2126602287 @default.
- W4311111489 cites W2155018999 @default.
- W4311111489 cites W2482204222 @default.
- W4311111489 cites W2518582440 @default.
- W4311111489 cites W2531733772 @default.
- W4311111489 cites W2553101787 @default.
- W4311111489 cites W2607113351 @default.
- W4311111489 cites W2767473732 @default.
- W4311111489 cites W2795587190 @default.
- W4311111489 cites W2799462148 @default.
- W4311111489 cites W2808897169 @default.
- W4311111489 cites W2908554084 @default.
- W4311111489 cites W2919115771 @default.
- W4311111489 cites W2946751363 @default.
- W4311111489 cites W2952312197 @default.
- W4311111489 cites W2970190413 @default.
- W4311111489 cites W2972055048 @default.
- W4311111489 cites W3001215021 @default.
- W4311111489 cites W3005713150 @default.
- W4311111489 cites W3008143116 @default.
- W4311111489 cites W3012665221 @default.
- W4311111489 cites W3013580149 @default.
- W4311111489 cites W3037120822 @default.
- W4311111489 cites W3042698632 @default.
- W4311111489 cites W3046138548 @default.
- W4311111489 cites W3062364896 @default.
- W4311111489 cites W3090507198 @default.
- W4311111489 cites W3091285238 @default.
- W4311111489 cites W3095669050 @default.
- W4311111489 cites W3112256303 @default.
- W4311111489 cites W3118299366 @default.
- W4311111489 cites W3118404085 @default.
- W4311111489 cites W3121216533 @default.
- W4311111489 cites W3125218497 @default.
- W4311111489 cites W3129054508 @default.
- W4311111489 cites W3133820615 @default.
- W4311111489 cites W3134537993 @default.
- W4311111489 cites W3137895856 @default.
- W4311111489 cites W3156537084 @default.
- W4311111489 cites W3185865387 @default.
- W4311111489 cites W3193598686 @default.
- W4311111489 cites W3195971125 @default.
- W4311111489 cites W3203230207 @default.
- W4311111489 cites W3205149422 @default.
- W4311111489 cites W4210937888 @default.
- W4311111489 cites W4225506672 @default.
- W4311111489 cites W4253667136 @default.
- W4311111489 cites W4312867856 @default.
- W4311111489 cites W59066530 @default.
- W4311111489 doi "https://doi.org/10.3390/electronics11233996" @default.
- W4311111489 hasPublicationYear "2022" @default.
- W4311111489 type Work @default.
- W4311111489 citedByCount "2" @default.
- W4311111489 countsByYear W43111114892023 @default.
- W4311111489 crossrefType "journal-article" @default.
- W4311111489 hasAuthorship W4311111489A5022989784 @default.
- W4311111489 hasAuthorship W4311111489A5048583491 @default.
- W4311111489 hasAuthorship W4311111489A5056345850 @default.
- W4311111489 hasAuthorship W4311111489A5072282430 @default.
- W4311111489 hasBestOaLocation W43111114891 @default.
- W4311111489 hasConcept C119857082 @default.
- W4311111489 hasConcept C126322002 @default.
- W4311111489 hasConcept C154945302 @default.
- W4311111489 hasConcept C159110408 @default.
- W4311111489 hasConcept C177713679 @default.
- W4311111489 hasConcept C2778198053 @default.
- W4311111489 hasConcept C2779134260 @default.
- W4311111489 hasConcept C2779951463 @default.
- W4311111489 hasConcept C2780074459 @default.
- W4311111489 hasConcept C41008148 @default.
- W4311111489 hasConcept C545542383 @default.
- W4311111489 hasConcept C71924100 @default.
- W4311111489 hasConceptScore W4311111489C119857082 @default.
- W4311111489 hasConceptScore W4311111489C126322002 @default.
- W4311111489 hasConceptScore W4311111489C154945302 @default.
- W4311111489 hasConceptScore W4311111489C159110408 @default.
- W4311111489 hasConceptScore W4311111489C177713679 @default.
- W4311111489 hasConceptScore W4311111489C2778198053 @default.
- W4311111489 hasConceptScore W4311111489C2779134260 @default.
- W4311111489 hasConceptScore W4311111489C2779951463 @default.
- W4311111489 hasConceptScore W4311111489C2780074459 @default.
- W4311111489 hasConceptScore W4311111489C41008148 @default.
- W4311111489 hasConceptScore W4311111489C545542383 @default.