Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311114516> ?p ?o ?g. }
- W4311114516 endingPage "3765" @default.
- W4311114516 startingPage "3754" @default.
- W4311114516 abstract "Digital breast tomosynthesis (DBT) can detect more cancers than the current standard breast screening method, digital mammography (DM); however, it can substantially increase the reading workload and thus hinder implementation in screening. Artificial intelligence (AI) might be a solution. The aim of this study was to retrospectively test different ways of using AI in a screening workflow.An AI system was used to analyse 14,772 double-read single-view DBT examinations from a screening trial with paired DM double reading. Three scenarios were studied: if AI can identify normal cases that can be excluded from human reading; if AI can replace the second reader; if AI can replace both readers. The number of detected cancers and false positives was compared with DM or DBT double reading.By excluding normal cases and only reading 50.5% (7460/14,772) of all examinations, 95% (121/127) of the DBT double reading detected cancers could be detected. Compared to DM screening, 27% (26/95) more cancers could be detected (p < 0.001) while keeping recall rates at the same level. With AI replacing the second reader, 95% (120/127) of the DBT double reading detected cancers could be detected-26% (25/95) more than DM screening (p < 0.001)-while increasing recall rates by 53%. AI alone with DBT has a sensitivity similar to DM double reading (p = 0.689).AI can open up possibilities for implementing DBT screening and detecting more cancers with the total reading workload unchanged. Considering the potential legal and psychological implications, replacing the second reader with AI would probably be most the feasible approach.• Breast cancer screening with digital breast tomosynthesis and artificial intelligence can detect more cancers than mammography screening without increasing screen-reading workload. • Artificial intelligence can either exclude low-risk cases from double reading or replace the second reader. • Retrospective study based on paired mammography and digital breast tomosynthesis screening data." @default.
- W4311114516 created "2022-12-23" @default.
- W4311114516 creator A5037046312 @default.
- W4311114516 creator A5051751682 @default.
- W4311114516 creator A5064386007 @default.
- W4311114516 creator A5090703194 @default.
- W4311114516 date "2022-12-11" @default.
- W4311114516 modified "2023-10-18" @default.
- W4311114516 title "Breast cancer screening with digital breast tomosynthesis: comparison of different reading strategies implementing artificial intelligence" @default.
- W4311114516 cites W2163237523 @default.
- W4311114516 cites W2460750615 @default.
- W4311114516 cites W2530341507 @default.
- W4311114516 cites W2665676251 @default.
- W4311114516 cites W2765666676 @default.
- W4311114516 cites W2766061684 @default.
- W4311114516 cites W2787183641 @default.
- W4311114516 cites W2889368834 @default.
- W4311114516 cites W2896522127 @default.
- W4311114516 cites W2901743512 @default.
- W4311114516 cites W2904081134 @default.
- W4311114516 cites W2918598741 @default.
- W4311114516 cites W2966665347 @default.
- W4311114516 cites W2968564600 @default.
- W4311114516 cites W2970392738 @default.
- W4311114516 cites W2991990992 @default.
- W4311114516 cites W2998175747 @default.
- W4311114516 cites W3009692632 @default.
- W4311114516 cites W3080997487 @default.
- W4311114516 cites W3081726800 @default.
- W4311114516 cites W3097208033 @default.
- W4311114516 cites W3116297975 @default.
- W4311114516 cites W3118741877 @default.
- W4311114516 cites W3120954711 @default.
- W4311114516 cites W3141560986 @default.
- W4311114516 cites W3158418391 @default.
- W4311114516 cites W3159635797 @default.
- W4311114516 cites W3180226778 @default.
- W4311114516 cites W3186959187 @default.
- W4311114516 cites W3198096452 @default.
- W4311114516 cites W4200319345 @default.
- W4311114516 cites W4206285699 @default.
- W4311114516 cites W4280581942 @default.
- W4311114516 doi "https://doi.org/10.1007/s00330-022-09316-y" @default.
- W4311114516 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36502459" @default.
- W4311114516 hasPublicationYear "2022" @default.
- W4311114516 type Work @default.
- W4311114516 citedByCount "4" @default.
- W4311114516 countsByYear W43111145162023 @default.
- W4311114516 crossrefType "journal-article" @default.
- W4311114516 hasAuthorship W4311114516A5037046312 @default.
- W4311114516 hasAuthorship W4311114516A5051751682 @default.
- W4311114516 hasAuthorship W4311114516A5064386007 @default.
- W4311114516 hasAuthorship W4311114516A5090703194 @default.
- W4311114516 hasBestOaLocation W43111145161 @default.
- W4311114516 hasConcept C100660578 @default.
- W4311114516 hasConcept C111919701 @default.
- W4311114516 hasConcept C112789634 @default.
- W4311114516 hasConcept C121608353 @default.
- W4311114516 hasConcept C126322002 @default.
- W4311114516 hasConcept C126838900 @default.
- W4311114516 hasConcept C147454874 @default.
- W4311114516 hasConcept C154945302 @default.
- W4311114516 hasConcept C15744967 @default.
- W4311114516 hasConcept C17744445 @default.
- W4311114516 hasConcept C180747234 @default.
- W4311114516 hasConcept C19527891 @default.
- W4311114516 hasConcept C199539241 @default.
- W4311114516 hasConcept C2778476105 @default.
- W4311114516 hasConcept C2778491387 @default.
- W4311114516 hasConcept C2780472235 @default.
- W4311114516 hasConcept C2909182381 @default.
- W4311114516 hasConcept C2985322473 @default.
- W4311114516 hasConcept C41008148 @default.
- W4311114516 hasConcept C530470458 @default.
- W4311114516 hasConcept C554936623 @default.
- W4311114516 hasConcept C64869954 @default.
- W4311114516 hasConcept C71924100 @default.
- W4311114516 hasConceptScore W4311114516C100660578 @default.
- W4311114516 hasConceptScore W4311114516C111919701 @default.
- W4311114516 hasConceptScore W4311114516C112789634 @default.
- W4311114516 hasConceptScore W4311114516C121608353 @default.
- W4311114516 hasConceptScore W4311114516C126322002 @default.
- W4311114516 hasConceptScore W4311114516C126838900 @default.
- W4311114516 hasConceptScore W4311114516C147454874 @default.
- W4311114516 hasConceptScore W4311114516C154945302 @default.
- W4311114516 hasConceptScore W4311114516C15744967 @default.
- W4311114516 hasConceptScore W4311114516C17744445 @default.
- W4311114516 hasConceptScore W4311114516C180747234 @default.
- W4311114516 hasConceptScore W4311114516C19527891 @default.
- W4311114516 hasConceptScore W4311114516C199539241 @default.
- W4311114516 hasConceptScore W4311114516C2778476105 @default.
- W4311114516 hasConceptScore W4311114516C2778491387 @default.
- W4311114516 hasConceptScore W4311114516C2780472235 @default.
- W4311114516 hasConceptScore W4311114516C2909182381 @default.
- W4311114516 hasConceptScore W4311114516C2985322473 @default.
- W4311114516 hasConceptScore W4311114516C41008148 @default.
- W4311114516 hasConceptScore W4311114516C530470458 @default.
- W4311114516 hasConceptScore W4311114516C554936623 @default.