Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311116387> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4311116387 endingPage "417" @default.
- W4311116387 startingPage "411" @default.
- W4311116387 abstract "Abstract Objective In long-term care (LTC) for older adults, interviews are used to collect client perspectives that are often recorded and transcribed verbatim, which is a time-consuming, tedious task. Automatic speech recognition (ASR) could provide a solution; however, current ASR systems are not effective for certain demographic groups. This study aims to show how data from specific groups, such as older adults or people with accents, can be used to develop an effective ASR. Materials and methods An initial ASR model was developed using the Mozilla Common Voice dataset. Audio and transcript data (34 h) from interviews with residents, family, and care professionals on quality of care were used. Interview data were continuously processed to reduce the word error rate (WER). Results Due to background noise and mispronunciations, an initial ASR model had a WER of 48.3% on interview data. After finetuning using interview data, the average WER was reduced to 24.3%. When tested on speech data from the interviews, a median WER of 22.1% was achieved, with residents displaying the highest WER (22.7%). The resulting ASR model was at least 6 times faster than manual transcription. Discussion The current method decreased the WER substantially, verifying its efficacy. Moreover, using local transcription of audio can be beneficial to the privacy of participants. Conclusions The current study shows that interview data from LTC for older adults can be effectively used to improve an ASR model. While the model output does still contain some errors, researchers reported that it saved much time during transcription." @default.
- W4311116387 created "2022-12-23" @default.
- W4311116387 creator A5001616422 @default.
- W4311116387 creator A5083247761 @default.
- W4311116387 creator A5083927413 @default.
- W4311116387 creator A5087684994 @default.
- W4311116387 date "2022-12-10" @default.
- W4311116387 modified "2023-10-18" @default.
- W4311116387 title "The development of an automatic speech recognition model using interview data from long-term care for older adults" @default.
- W4311116387 cites W161377257 @default.
- W4311116387 cites W1964386875 @default.
- W4311116387 cites W2074231493 @default.
- W4311116387 cites W2745560856 @default.
- W4311116387 cites W2944183229 @default.
- W4311116387 cites W2990296736 @default.
- W4311116387 cites W3042273418 @default.
- W4311116387 cites W3105220303 @default.
- W4311116387 cites W3170201991 @default.
- W4311116387 cites W3209984917 @default.
- W4311116387 cites W3211278025 @default.
- W4311116387 cites W4242673399 @default.
- W4311116387 doi "https://doi.org/10.1093/jamia/ocac241" @default.
- W4311116387 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36495570" @default.
- W4311116387 hasPublicationYear "2022" @default.
- W4311116387 type Work @default.
- W4311116387 citedByCount "1" @default.
- W4311116387 countsByYear W43111163872023 @default.
- W4311116387 crossrefType "journal-article" @default.
- W4311116387 hasAuthorship W4311116387A5001616422 @default.
- W4311116387 hasAuthorship W4311116387A5083247761 @default.
- W4311116387 hasAuthorship W4311116387A5083927413 @default.
- W4311116387 hasAuthorship W4311116387A5087684994 @default.
- W4311116387 hasBestOaLocation W43111163871 @default.
- W4311116387 hasConcept C121332964 @default.
- W4311116387 hasConcept C138885662 @default.
- W4311116387 hasConcept C15744967 @default.
- W4311116387 hasConcept C162324750 @default.
- W4311116387 hasConcept C179926584 @default.
- W4311116387 hasConcept C187736073 @default.
- W4311116387 hasConcept C2780451532 @default.
- W4311116387 hasConcept C28490314 @default.
- W4311116387 hasConcept C40969351 @default.
- W4311116387 hasConcept C41008148 @default.
- W4311116387 hasConcept C41895202 @default.
- W4311116387 hasConcept C548259974 @default.
- W4311116387 hasConcept C61797465 @default.
- W4311116387 hasConcept C62520636 @default.
- W4311116387 hasConcept C71924100 @default.
- W4311116387 hasConceptScore W4311116387C121332964 @default.
- W4311116387 hasConceptScore W4311116387C138885662 @default.
- W4311116387 hasConceptScore W4311116387C15744967 @default.
- W4311116387 hasConceptScore W4311116387C162324750 @default.
- W4311116387 hasConceptScore W4311116387C179926584 @default.
- W4311116387 hasConceptScore W4311116387C187736073 @default.
- W4311116387 hasConceptScore W4311116387C2780451532 @default.
- W4311116387 hasConceptScore W4311116387C28490314 @default.
- W4311116387 hasConceptScore W4311116387C40969351 @default.
- W4311116387 hasConceptScore W4311116387C41008148 @default.
- W4311116387 hasConceptScore W4311116387C41895202 @default.
- W4311116387 hasConceptScore W4311116387C548259974 @default.
- W4311116387 hasConceptScore W4311116387C61797465 @default.
- W4311116387 hasConceptScore W4311116387C62520636 @default.
- W4311116387 hasConceptScore W4311116387C71924100 @default.
- W4311116387 hasIssue "3" @default.
- W4311116387 hasLocation W43111163871 @default.
- W4311116387 hasLocation W43111163872 @default.
- W4311116387 hasLocation W43111163873 @default.
- W4311116387 hasOpenAccess W4311116387 @default.
- W4311116387 hasPrimaryLocation W43111163871 @default.
- W4311116387 hasRelatedWork W1751699554 @default.
- W4311116387 hasRelatedWork W1982907196 @default.
- W4311116387 hasRelatedWork W2008308193 @default.
- W4311116387 hasRelatedWork W2017555767 @default.
- W4311116387 hasRelatedWork W2147011861 @default.
- W4311116387 hasRelatedWork W2401572723 @default.
- W4311116387 hasRelatedWork W2505877856 @default.
- W4311116387 hasRelatedWork W2748952813 @default.
- W4311116387 hasRelatedWork W2763412546 @default.
- W4311116387 hasRelatedWork W2899084033 @default.
- W4311116387 hasVolume "30" @default.
- W4311116387 isParatext "false" @default.
- W4311116387 isRetracted "false" @default.
- W4311116387 workType "article" @default.