Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311119663> ?p ?o ?g. }
- W4311119663 abstract "Abstract Background Experimentally brought to light by Russell and hypothetically explained by Korteweg–de Vries, the KDV equation has drawn the attention of several mathematicians and physicists because of its extreme substantial structure in describing nonlinear evolution equations governing the propagation of weakly dispersive and nonlinear waves. Due to the prevalent nature and application of solitary waves in nonlinear dynamics, we discuss the soliton solution and application of the fractional-order Korteweg–de Vries (KDV) equation using a new analytical approach named the “Modified initial guess homotopy perturbation.” Results We established the proposed technique by coupling a power series function of arbitrary order with the renown homotopy perturbation method. The convergence of the method is proved using the Banach fixed point theorem. The methodology was demonstrated with a generalized KDV equation, and we applied it to solve linear and nonlinear fractional-order Korteweg–de Vries equations, which are in Caputo sense. The method’s applicability and effectiveness were established as a feasible series of arbitrary orders that accelerate quickly to the exact solution at an integer order and are obtained as solutions. Numerical simulations were conducted to investigate the effect of Caputo fractional-order derivatives in the dispersion and propagation of water waves by varying the order $$alpha$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>α</mml:mi> </mml:math> on the $$[0,1]$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> interval. Comparative analysis of the simulation results, which were presented graphically and discussed, reveals that the degree of freedom of the Caputo fractional-order derivative is vital to controlling the magnitude of environmental hazards associated with water waves when adjusted. Conclusion The proposed method is recommended for obtaining convergent series solutions to fractional-order partial differential equations. We suggested that applied mathematicians and physicists investigate this work to better understand the impact of the degree of freedom posed by Caputo fractional-order derivatives in wave dispersion and propagation, as physical applications can help divert wave-related environmental hazards." @default.
- W4311119663 created "2022-12-23" @default.
- W4311119663 creator A5021097529 @default.
- W4311119663 creator A5030621591 @default.
- W4311119663 creator A5043338168 @default.
- W4311119663 creator A5047614683 @default.
- W4311119663 creator A5049582712 @default.
- W4311119663 date "2022-12-02" @default.
- W4311119663 modified "2023-09-26" @default.
- W4311119663 title "Modified homotopy perturbation method and its application to analytical solitons of fractional-order Korteweg–de Vries equation" @default.
- W4311119663 cites W1427593441 @default.
- W4311119663 cites W164764341 @default.
- W4311119663 cites W1970467391 @default.
- W4311119663 cites W1979722387 @default.
- W4311119663 cites W1984853762 @default.
- W4311119663 cites W2014042868 @default.
- W4311119663 cites W2018233025 @default.
- W4311119663 cites W2022575174 @default.
- W4311119663 cites W2027098695 @default.
- W4311119663 cites W2095184008 @default.
- W4311119663 cites W2099498304 @default.
- W4311119663 cites W2104660352 @default.
- W4311119663 cites W2106912849 @default.
- W4311119663 cites W2163247815 @default.
- W4311119663 cites W2165917005 @default.
- W4311119663 cites W2596494212 @default.
- W4311119663 cites W2747532716 @default.
- W4311119663 cites W2901375502 @default.
- W4311119663 cites W2925165356 @default.
- W4311119663 cites W2963641381 @default.
- W4311119663 cites W3031209935 @default.
- W4311119663 cites W3031224570 @default.
- W4311119663 cites W3032645491 @default.
- W4311119663 cites W3092944378 @default.
- W4311119663 cites W3168842728 @default.
- W4311119663 cites W3174978204 @default.
- W4311119663 cites W3187652177 @default.
- W4311119663 cites W3191950654 @default.
- W4311119663 cites W3204293349 @default.
- W4311119663 cites W3204609115 @default.
- W4311119663 cites W4205637863 @default.
- W4311119663 cites W4213004035 @default.
- W4311119663 cites W4300518671 @default.
- W4311119663 cites W98435985 @default.
- W4311119663 doi "https://doi.org/10.1186/s43088-022-00317-w" @default.
- W4311119663 hasPublicationYear "2022" @default.
- W4311119663 type Work @default.
- W4311119663 citedByCount "4" @default.
- W4311119663 countsByYear W43111196632023 @default.
- W4311119663 crossrefType "journal-article" @default.
- W4311119663 hasAuthorship W4311119663A5021097529 @default.
- W4311119663 hasAuthorship W4311119663A5030621591 @default.
- W4311119663 hasAuthorship W4311119663A5043338168 @default.
- W4311119663 hasAuthorship W4311119663A5047614683 @default.
- W4311119663 hasAuthorship W4311119663A5049582712 @default.
- W4311119663 hasBestOaLocation W43111196631 @default.
- W4311119663 hasConcept C10138342 @default.
- W4311119663 hasConcept C121332964 @default.
- W4311119663 hasConcept C134306372 @default.
- W4311119663 hasConcept C146630112 @default.
- W4311119663 hasConcept C158622935 @default.
- W4311119663 hasConcept C162324750 @default.
- W4311119663 hasConcept C173636693 @default.
- W4311119663 hasConcept C177918212 @default.
- W4311119663 hasConcept C182306322 @default.
- W4311119663 hasConcept C202444582 @default.
- W4311119663 hasConcept C28826006 @default.
- W4311119663 hasConcept C33923547 @default.
- W4311119663 hasConcept C37914503 @default.
- W4311119663 hasConcept C5961521 @default.
- W4311119663 hasConcept C62520636 @default.
- W4311119663 hasConcept C87651913 @default.
- W4311119663 hasConcept C91328119 @default.
- W4311119663 hasConceptScore W4311119663C10138342 @default.
- W4311119663 hasConceptScore W4311119663C121332964 @default.
- W4311119663 hasConceptScore W4311119663C134306372 @default.
- W4311119663 hasConceptScore W4311119663C146630112 @default.
- W4311119663 hasConceptScore W4311119663C158622935 @default.
- W4311119663 hasConceptScore W4311119663C162324750 @default.
- W4311119663 hasConceptScore W4311119663C173636693 @default.
- W4311119663 hasConceptScore W4311119663C177918212 @default.
- W4311119663 hasConceptScore W4311119663C182306322 @default.
- W4311119663 hasConceptScore W4311119663C202444582 @default.
- W4311119663 hasConceptScore W4311119663C28826006 @default.
- W4311119663 hasConceptScore W4311119663C33923547 @default.
- W4311119663 hasConceptScore W4311119663C37914503 @default.
- W4311119663 hasConceptScore W4311119663C5961521 @default.
- W4311119663 hasConceptScore W4311119663C62520636 @default.
- W4311119663 hasConceptScore W4311119663C87651913 @default.
- W4311119663 hasConceptScore W4311119663C91328119 @default.
- W4311119663 hasIssue "1" @default.
- W4311119663 hasLocation W43111196631 @default.
- W4311119663 hasLocation W43111196632 @default.
- W4311119663 hasOpenAccess W4311119663 @default.
- W4311119663 hasPrimaryLocation W43111196631 @default.
- W4311119663 hasRelatedWork W1995278211 @default.
- W4311119663 hasRelatedWork W2018501906 @default.
- W4311119663 hasRelatedWork W2094070000 @default.
- W4311119663 hasRelatedWork W2133494764 @default.
- W4311119663 hasRelatedWork W2158386302 @default.