Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311127370> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4311127370 endingPage "109248" @default.
- W4311127370 startingPage "109248" @default.
- W4311127370 abstract "Pulsed disk and doughnut column (PDDC) is widely applied in liquid-liquid solvent extraction. Due to a nonlinear and complex mechanism in PDDC, existing single empirical models often fail to predict the performance of different PDDCs. In this work, machine learning (ML) models such as random forest (RF), support vector machine (SVM), and artificial neural network (ANN) are developed to predict the PDDC's performance including dispersed-phase holdup (xd), drop size (d32), axial diffusion coefficient (Ec) and the height of mass transfer unit (Hoc). ML models were trained based on a comprehensive dataset and the results showed that the prediction performances of the ML models are better than the empirical correlations. The best average absolute relative error (AARE) and correlation coefficient (R2) of d32, xd, Ec and Hoc were 3.97% and 0.99, 10.16% and 0.955, 12.71% and 0.973, 13.44% and 0.982, respectively. RF and SVM exhibited the highest predictive accuracy. Furthermore, the feature importance was determined, which indicated the most significant features for d32, xd, Ec and Hoc were pulse intensity, the velocity of dispersed phase, the velocity of continuous phase and the properties of continuous phase, respectively. This study provided a new perspective to model and design PDDC." @default.
- W4311127370 created "2022-12-23" @default.
- W4311127370 creator A5018523807 @default.
- W4311127370 creator A5022550959 @default.
- W4311127370 creator A5028231189 @default.
- W4311127370 creator A5030054597 @default.
- W4311127370 creator A5070413974 @default.
- W4311127370 creator A5077296245 @default.
- W4311127370 creator A5080682645 @default.
- W4311127370 creator A5082808200 @default.
- W4311127370 date "2023-01-01" @default.
- W4311127370 modified "2023-10-14" @default.
- W4311127370 title "Performance prediction of disc and doughnut extraction columns using bayes optimization algorithm-based machine learning models" @default.
- W4311127370 cites W1975232582 @default.
- W4311127370 cites W1977720333 @default.
- W4311127370 cites W1990058315 @default.
- W4311127370 cites W1990561804 @default.
- W4311127370 cites W1998517204 @default.
- W4311127370 cites W2020978280 @default.
- W4311127370 cites W2045628159 @default.
- W4311127370 cites W2064649660 @default.
- W4311127370 cites W2079869662 @default.
- W4311127370 cites W2088651812 @default.
- W4311127370 cites W2118696230 @default.
- W4311127370 cites W2139639149 @default.
- W4311127370 cites W2161761578 @default.
- W4311127370 cites W2232895316 @default.
- W4311127370 cites W2298559817 @default.
- W4311127370 cites W2333308688 @default.
- W4311127370 cites W2586753324 @default.
- W4311127370 cites W2598610704 @default.
- W4311127370 cites W2608185695 @default.
- W4311127370 cites W2911964244 @default.
- W4311127370 cites W2936187255 @default.
- W4311127370 cites W2958068873 @default.
- W4311127370 cites W3013498854 @default.
- W4311127370 cites W3041647457 @default.
- W4311127370 cites W3045004532 @default.
- W4311127370 cites W3094510613 @default.
- W4311127370 cites W3100613483 @default.
- W4311127370 cites W3114324630 @default.
- W4311127370 cites W3206066207 @default.
- W4311127370 cites W3214208066 @default.
- W4311127370 doi "https://doi.org/10.1016/j.cep.2022.109248" @default.
- W4311127370 hasPublicationYear "2023" @default.
- W4311127370 type Work @default.
- W4311127370 citedByCount "1" @default.
- W4311127370 countsByYear W43111273702023 @default.
- W4311127370 crossrefType "journal-article" @default.
- W4311127370 hasAuthorship W4311127370A5018523807 @default.
- W4311127370 hasAuthorship W4311127370A5022550959 @default.
- W4311127370 hasAuthorship W4311127370A5028231189 @default.
- W4311127370 hasAuthorship W4311127370A5030054597 @default.
- W4311127370 hasAuthorship W4311127370A5070413974 @default.
- W4311127370 hasAuthorship W4311127370A5077296245 @default.
- W4311127370 hasAuthorship W4311127370A5080682645 @default.
- W4311127370 hasAuthorship W4311127370A5082808200 @default.
- W4311127370 hasConcept C11413529 @default.
- W4311127370 hasConcept C119857082 @default.
- W4311127370 hasConcept C12267149 @default.
- W4311127370 hasConcept C154945302 @default.
- W4311127370 hasConcept C169258074 @default.
- W4311127370 hasConcept C2780092901 @default.
- W4311127370 hasConcept C41008148 @default.
- W4311127370 hasConcept C50644808 @default.
- W4311127370 hasConceptScore W4311127370C11413529 @default.
- W4311127370 hasConceptScore W4311127370C119857082 @default.
- W4311127370 hasConceptScore W4311127370C12267149 @default.
- W4311127370 hasConceptScore W4311127370C154945302 @default.
- W4311127370 hasConceptScore W4311127370C169258074 @default.
- W4311127370 hasConceptScore W4311127370C2780092901 @default.
- W4311127370 hasConceptScore W4311127370C41008148 @default.
- W4311127370 hasConceptScore W4311127370C50644808 @default.
- W4311127370 hasLocation W43111273701 @default.
- W4311127370 hasOpenAccess W4311127370 @default.
- W4311127370 hasPrimaryLocation W43111273701 @default.
- W4311127370 hasRelatedWork W1996541855 @default.
- W4311127370 hasRelatedWork W2985924212 @default.
- W4311127370 hasRelatedWork W3195168932 @default.
- W4311127370 hasRelatedWork W3195610867 @default.
- W4311127370 hasRelatedWork W4308191010 @default.
- W4311127370 hasRelatedWork W4321636153 @default.
- W4311127370 hasRelatedWork W4323021782 @default.
- W4311127370 hasRelatedWork W4327511089 @default.
- W4311127370 hasRelatedWork W4377964522 @default.
- W4311127370 hasRelatedWork W4381414210 @default.
- W4311127370 hasVolume "183" @default.
- W4311127370 isParatext "false" @default.
- W4311127370 isRetracted "false" @default.
- W4311127370 workType "article" @default.