Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311133761> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4311133761 endingPage "1153" @default.
- W4311133761 startingPage "1153" @default.
- W4311133761 abstract "The human body is designed to experience stress and react to it, and experiencing challenges causes our body to produce physical and mental responses and also helps our body to adjust to new situations. However, stress becomes a problem when it continues to remain without a period of relaxation or relief. When a person has long-term stress, continued activation of the stress response causes wear and tear on the body. Chronic stress results in cancer, cardiovascular disease, depression, and diabetes, and thus is deeply detrimental to our health. Previous researchers have performed a lot of work regarding mental stress, using mainly machine-learning-based approaches. However, most of the methods have used raw, unprocessed data, which cause more errors and thereby affect the overall model performance. Moreover, corrupt data values are very common, especially for wearable sensor datasets, which may also lead to poor performance in this regard. This paper introduces a deep-learning-based method for mental stress detection by encoding time series raw data into Gramian Angular Field images, which results in promising accuracy while detecting the stress levels of an individual. The experiment has been conducted on two standard benchmark datasets, namely WESAD (wearable stress and affect detection) and SWELL. During the studies, testing accuracies of 94.8% and 99.39% are achieved for the WESAD and SWELL datasets, respectively. For the WESAD dataset, chest data are taken for the experiment, including the data of sensor modalities such as three-axis acceleration (ACC), electrocardiogram (ECG), body temperature (TEMP), respiration (RESP), etc." @default.
- W4311133761 created "2022-12-23" @default.
- W4311133761 creator A5000766340 @default.
- W4311133761 creator A5002900384 @default.
- W4311133761 creator A5005406818 @default.
- W4311133761 creator A5027525633 @default.
- W4311133761 creator A5055227045 @default.
- W4311133761 date "2022-12-09" @default.
- W4311133761 modified "2023-10-13" @default.
- W4311133761 title "Classification of Mental Stress from Wearable Physiological Sensors Using Image-Encoding-Based Deep Neural Network" @default.
- W4311133761 cites W1494327266 @default.
- W4311133761 cites W2031590924 @default.
- W4311133761 cites W2111181238 @default.
- W4311133761 cites W2159872201 @default.
- W4311133761 cites W2184481998 @default.
- W4311133761 cites W2522453581 @default.
- W4311133761 cites W2894771803 @default.
- W4311133761 cites W2921194089 @default.
- W4311133761 cites W2990554115 @default.
- W4311133761 cites W2995251745 @default.
- W4311133761 cites W3032979685 @default.
- W4311133761 cites W3082076610 @default.
- W4311133761 cites W3093478721 @default.
- W4311133761 cites W3126247264 @default.
- W4311133761 cites W3154846076 @default.
- W4311133761 cites W3164720667 @default.
- W4311133761 cites W3209406277 @default.
- W4311133761 cites W3217494379 @default.
- W4311133761 cites W4205515185 @default.
- W4311133761 cites W4226188245 @default.
- W4311133761 cites W4283690093 @default.
- W4311133761 cites W4286775862 @default.
- W4311133761 cites W4293255187 @default.
- W4311133761 cites W4293340501 @default.
- W4311133761 cites W4295308738 @default.
- W4311133761 cites W4309003769 @default.
- W4311133761 cites W4312546264 @default.
- W4311133761 doi "https://doi.org/10.3390/bios12121153" @default.
- W4311133761 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36551120" @default.
- W4311133761 hasPublicationYear "2022" @default.
- W4311133761 type Work @default.
- W4311133761 citedByCount "8" @default.
- W4311133761 countsByYear W43111337612023 @default.
- W4311133761 crossrefType "journal-article" @default.
- W4311133761 hasAuthorship W4311133761A5000766340 @default.
- W4311133761 hasAuthorship W4311133761A5002900384 @default.
- W4311133761 hasAuthorship W4311133761A5005406818 @default.
- W4311133761 hasAuthorship W4311133761A5027525633 @default.
- W4311133761 hasAuthorship W4311133761A5055227045 @default.
- W4311133761 hasBestOaLocation W43111337611 @default.
- W4311133761 hasConcept C108583219 @default.
- W4311133761 hasConcept C119857082 @default.
- W4311133761 hasConcept C138885662 @default.
- W4311133761 hasConcept C149635348 @default.
- W4311133761 hasConcept C150594956 @default.
- W4311133761 hasConcept C154945302 @default.
- W4311133761 hasConcept C21036866 @default.
- W4311133761 hasConcept C41008148 @default.
- W4311133761 hasConcept C41895202 @default.
- W4311133761 hasConceptScore W4311133761C108583219 @default.
- W4311133761 hasConceptScore W4311133761C119857082 @default.
- W4311133761 hasConceptScore W4311133761C138885662 @default.
- W4311133761 hasConceptScore W4311133761C149635348 @default.
- W4311133761 hasConceptScore W4311133761C150594956 @default.
- W4311133761 hasConceptScore W4311133761C154945302 @default.
- W4311133761 hasConceptScore W4311133761C21036866 @default.
- W4311133761 hasConceptScore W4311133761C41008148 @default.
- W4311133761 hasConceptScore W4311133761C41895202 @default.
- W4311133761 hasIssue "12" @default.
- W4311133761 hasLocation W43111337611 @default.
- W4311133761 hasLocation W43111337612 @default.
- W4311133761 hasLocation W43111337613 @default.
- W4311133761 hasOpenAccess W4311133761 @default.
- W4311133761 hasPrimaryLocation W43111337611 @default.
- W4311133761 hasRelatedWork W2795261237 @default.
- W4311133761 hasRelatedWork W3014300295 @default.
- W4311133761 hasRelatedWork W3164822677 @default.
- W4311133761 hasRelatedWork W4223943233 @default.
- W4311133761 hasRelatedWork W4225161397 @default.
- W4311133761 hasRelatedWork W4312200629 @default.
- W4311133761 hasRelatedWork W4360585206 @default.
- W4311133761 hasRelatedWork W4364306694 @default.
- W4311133761 hasRelatedWork W4380075502 @default.
- W4311133761 hasRelatedWork W4380086463 @default.
- W4311133761 hasVolume "12" @default.
- W4311133761 isParatext "false" @default.
- W4311133761 isRetracted "false" @default.
- W4311133761 workType "article" @default.