Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311134061> ?p ?o ?g. }
- W4311134061 abstract "Abstract Background Cis-regulatory regions (CRRs) are non-coding regions of the DNA that fine control the spatio-temporal pattern of transcription; they are involved in a wide range of pivotal processes such as the development of specific cell-lines/tissues and the dynamic cell response to physiological stimuli. Recent studies showed that genetic variants occurring in CRRs are strongly correlated with pathogenicity or deleteriousness. Considering the central role of CRRs in the regulation of physiological and pathological conditions, the correct identification of CRRs and of their tissue-specific activity status through Machine Learning methods plays a major role in dissecting the impact of genetic variants on human diseases. Unfortunately, the problem is still open, though some promising results have been already reported by (deep) machine-learning based methods that predict active promoters and enhancers in specific tissues or cell lines by encoding epigenetic or spectral features directly extracted from DNA sequences. Results We present the experiments we performed to compare two Deep Neural Networks, a Feed-Forward Neural Network model working on epigenomic features, and a Convolutional Neural Network model working only on genomic sequence, targeted to the identification of enhancer- and promoter-activity in specific cell lines. While performing experiments to understand how the experimental setup influences the prediction performance of the methods, we particularly focused on (1) automatic model selection performed by Bayesian optimization and (2) exploring different data rebalancing setups for reducing negative unbalancing effects. Conclusions Results show that (1) automatic model selection by Bayesian optimization improves the quality of the learner; (2) data rebalancing considerably impacts the prediction performance of the models; test set rebalancing may provide over-optimistic results, and should therefore be cautiously applied; (3) despite working on sequence data, convolutional models obtain performance close to those of feed forward models working on epigenomic information, which suggests that also sequence data carries informative content for CRR-activity prediction. We therefore suggest combining both models/data types in future works." @default.
- W4311134061 created "2022-12-23" @default.
- W4311134061 creator A5034969250 @default.
- W4311134061 creator A5042201502 @default.
- W4311134061 creator A5056406146 @default.
- W4311134061 creator A5060365341 @default.
- W4311134061 creator A5071444502 @default.
- W4311134061 creator A5082477584 @default.
- W4311134061 creator A5089496823 @default.
- W4311134061 date "2022-12-12" @default.
- W4311134061 modified "2023-10-18" @default.
- W4311134061 title "Boosting tissue-specific prediction of active cis-regulatory regions through deep learning and Bayesian optimization techniques" @default.
- W4311134061 cites W1903485451 @default.
- W4311134061 cites W1966716734 @default.
- W4311134061 cites W1990110642 @default.
- W4311134061 cites W2004966039 @default.
- W4311134061 cites W2007694108 @default.
- W4311134061 cites W2015845481 @default.
- W4311134061 cites W2018363492 @default.
- W4311134061 cites W2042930277 @default.
- W4311134061 cites W2076154138 @default.
- W4311134061 cites W2078059415 @default.
- W4311134061 cites W2084160423 @default.
- W4311134061 cites W2088296450 @default.
- W4311134061 cites W2096649264 @default.
- W4311134061 cites W2097791641 @default.
- W4311134061 cites W2100847260 @default.
- W4311134061 cites W2108797218 @default.
- W4311134061 cites W2115717891 @default.
- W4311134061 cites W2117723622 @default.
- W4311134061 cites W2118978333 @default.
- W4311134061 cites W2136105240 @default.
- W4311134061 cites W2140240158 @default.
- W4311134061 cites W2141816956 @default.
- W4311134061 cites W2145191876 @default.
- W4311134061 cites W2157750191 @default.
- W4311134061 cites W2158262405 @default.
- W4311134061 cites W2158698691 @default.
- W4311134061 cites W2161435642 @default.
- W4311134061 cites W2161797274 @default.
- W4311134061 cites W2171193618 @default.
- W4311134061 cites W2192203593 @default.
- W4311134061 cites W2209883607 @default.
- W4311134061 cites W2259938310 @default.
- W4311134061 cites W2311599690 @default.
- W4311134061 cites W2463715377 @default.
- W4311134061 cites W2553838260 @default.
- W4311134061 cites W2565516711 @default.
- W4311134061 cites W2591130492 @default.
- W4311134061 cites W2594265094 @default.
- W4311134061 cites W2603014781 @default.
- W4311134061 cites W2620563544 @default.
- W4311134061 cites W2750304043 @default.
- W4311134061 cites W2769418303 @default.
- W4311134061 cites W2772741766 @default.
- W4311134061 cites W2785792383 @default.
- W4311134061 cites W2861348389 @default.
- W4311134061 cites W2896447961 @default.
- W4311134061 cites W2905452503 @default.
- W4311134061 cites W2911555896 @default.
- W4311134061 cites W2911925130 @default.
- W4311134061 cites W2950980382 @default.
- W4311134061 cites W2951901532 @default.
- W4311134061 cites W2963334963 @default.
- W4311134061 cites W2965857035 @default.
- W4311134061 cites W2982376588 @default.
- W4311134061 cites W3011009550 @default.
- W4311134061 cites W3022177297 @default.
- W4311134061 cites W3024257551 @default.
- W4311134061 cites W3027311123 @default.
- W4311134061 cites W3096413426 @default.
- W4311134061 cites W4211049957 @default.
- W4311134061 cites W4230875896 @default.
- W4311134061 cites W4249463359 @default.
- W4311134061 cites W4252684946 @default.
- W4311134061 cites W571682839 @default.
- W4311134061 doi "https://doi.org/10.1186/s12859-022-04582-5" @default.
- W4311134061 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36510125" @default.
- W4311134061 hasPublicationYear "2022" @default.
- W4311134061 type Work @default.
- W4311134061 citedByCount "1" @default.
- W4311134061 countsByYear W43111340612023 @default.
- W4311134061 crossrefType "journal-article" @default.
- W4311134061 hasAuthorship W4311134061A5034969250 @default.
- W4311134061 hasAuthorship W4311134061A5042201502 @default.
- W4311134061 hasAuthorship W4311134061A5056406146 @default.
- W4311134061 hasAuthorship W4311134061A5060365341 @default.
- W4311134061 hasAuthorship W4311134061A5071444502 @default.
- W4311134061 hasAuthorship W4311134061A5082477584 @default.
- W4311134061 hasAuthorship W4311134061A5089496823 @default.
- W4311134061 hasBestOaLocation W43111340611 @default.
- W4311134061 hasConcept C104317684 @default.
- W4311134061 hasConcept C108583219 @default.
- W4311134061 hasConcept C111936080 @default.
- W4311134061 hasConcept C119857082 @default.
- W4311134061 hasConcept C121912465 @default.
- W4311134061 hasConcept C150194340 @default.
- W4311134061 hasConcept C154945302 @default.
- W4311134061 hasConcept C190727270 @default.
- W4311134061 hasConcept C2778049539 @default.