Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311137777> ?p ?o ?g. }
- W4311137777 endingPage "e01496" @default.
- W4311137777 startingPage "e01496" @default.
- W4311137777 abstract "As trends continue to move toward the introduction of intelligent methods to automate software engineering processes, security requirements classification is rapidly turning into a highly potent field for the software engineering community. There are several models for classifying security requirements proposed in the literature. However, their adoption and use is constrained by the absence of substantial datasets to allow for the replication and generalization of studies, using more advanced machine-learning techniques. Furthermore, most researchers in this area, consider Maintainability as purely a non-functional requirement with no relation to security. This has been identified to be a major source of security concerns. The main objective of this study is to propose a software requirements classification approach that considers maintainability as a security requirement. This seeks to ensure that maintenance efforts don't lead to new software vulnerabilities that were previously not present during deployment. A mixed research methodology is adopted as qualitative data is collected from students’ project documentation, labelled, and transformed into quantitative form during analysis. As a culmination of this process, a validated original publicly accessible, labelled software requirements dataset of student software project requirements (DOSSPRE) is obtained and presented to support the approach. It contains 1317 software requirements, including security requirements, functional requirements, and other non-functional requirements. Two versions of the dataset are presented: one for binary classification of security requirements vs. non-security requirements and the other for multi-class classification tasks with various more granular security requirements vs. non-security requirements. In both instances, well-known machine learning algorithms are used to verify the dataset. Support Vector Machine (SVM) and Logistic Regression were the top performers in multi-class classification with an average Accuracy of 86% in both cases. Multinomial Nave Bayes topped the other machine learning techniques in binary classification with 91% Precision, 69% Recall, 78% F1-Score, and Accuracy of 86%. The dataset is accessible on this link https://data.mendeley.com/datasets/23xtbvk6yp/1" @default.
- W4311137777 created "2022-12-23" @default.
- W4311137777 creator A5004199292 @default.
- W4311137777 creator A5035132239 @default.
- W4311137777 creator A5080334591 @default.
- W4311137777 creator A5083117347 @default.
- W4311137777 date "2023-03-01" @default.
- W4311137777 modified "2023-09-25" @default.
- W4311137777 title "A classification approach for software requirements towards maintainable security" @default.
- W4311137777 cites W1526140543 @default.
- W4311137777 cites W2013238834 @default.
- W4311137777 cites W2026316743 @default.
- W4311137777 cites W2060736388 @default.
- W4311137777 cites W2081944711 @default.
- W4311137777 cites W2106326663 @default.
- W4311137777 cites W2118978333 @default.
- W4311137777 cites W2127626360 @default.
- W4311137777 cites W2346441090 @default.
- W4311137777 cites W2996713668 @default.
- W4311137777 cites W3017951264 @default.
- W4311137777 cites W3020972105 @default.
- W4311137777 cites W3130732469 @default.
- W4311137777 cites W3154518741 @default.
- W4311137777 cites W3161918289 @default.
- W4311137777 cites W4200380830 @default.
- W4311137777 cites W4323062737 @default.
- W4311137777 doi "https://doi.org/10.1016/j.sciaf.2022.e01496" @default.
- W4311137777 hasPublicationYear "2023" @default.
- W4311137777 type Work @default.
- W4311137777 citedByCount "0" @default.
- W4311137777 crossrefType "journal-article" @default.
- W4311137777 hasAuthorship W4311137777A5004199292 @default.
- W4311137777 hasAuthorship W4311137777A5035132239 @default.
- W4311137777 hasAuthorship W4311137777A5080334591 @default.
- W4311137777 hasAuthorship W4311137777A5083117347 @default.
- W4311137777 hasBestOaLocation W43111377771 @default.
- W4311137777 hasConcept C102780508 @default.
- W4311137777 hasConcept C103377522 @default.
- W4311137777 hasConcept C111919701 @default.
- W4311137777 hasConcept C115903868 @default.
- W4311137777 hasConcept C13159133 @default.
- W4311137777 hasConcept C135475081 @default.
- W4311137777 hasConcept C160713754 @default.
- W4311137777 hasConcept C184842701 @default.
- W4311137777 hasConcept C186846655 @default.
- W4311137777 hasConcept C195518309 @default.
- W4311137777 hasConcept C199360897 @default.
- W4311137777 hasConcept C199747065 @default.
- W4311137777 hasConcept C2777904410 @default.
- W4311137777 hasConcept C29983905 @default.
- W4311137777 hasConcept C38652104 @default.
- W4311137777 hasConcept C41008148 @default.
- W4311137777 hasConcept C527648132 @default.
- W4311137777 hasConcept C529173508 @default.
- W4311137777 hasConcept C54534927 @default.
- W4311137777 hasConcept C59488412 @default.
- W4311137777 hasConcept C62235348 @default.
- W4311137777 hasConcept C62913178 @default.
- W4311137777 hasConcept C6604083 @default.
- W4311137777 hasConcept C79974875 @default.
- W4311137777 hasConceptScore W4311137777C102780508 @default.
- W4311137777 hasConceptScore W4311137777C103377522 @default.
- W4311137777 hasConceptScore W4311137777C111919701 @default.
- W4311137777 hasConceptScore W4311137777C115903868 @default.
- W4311137777 hasConceptScore W4311137777C13159133 @default.
- W4311137777 hasConceptScore W4311137777C135475081 @default.
- W4311137777 hasConceptScore W4311137777C160713754 @default.
- W4311137777 hasConceptScore W4311137777C184842701 @default.
- W4311137777 hasConceptScore W4311137777C186846655 @default.
- W4311137777 hasConceptScore W4311137777C195518309 @default.
- W4311137777 hasConceptScore W4311137777C199360897 @default.
- W4311137777 hasConceptScore W4311137777C199747065 @default.
- W4311137777 hasConceptScore W4311137777C2777904410 @default.
- W4311137777 hasConceptScore W4311137777C29983905 @default.
- W4311137777 hasConceptScore W4311137777C38652104 @default.
- W4311137777 hasConceptScore W4311137777C41008148 @default.
- W4311137777 hasConceptScore W4311137777C527648132 @default.
- W4311137777 hasConceptScore W4311137777C529173508 @default.
- W4311137777 hasConceptScore W4311137777C54534927 @default.
- W4311137777 hasConceptScore W4311137777C59488412 @default.
- W4311137777 hasConceptScore W4311137777C62235348 @default.
- W4311137777 hasConceptScore W4311137777C62913178 @default.
- W4311137777 hasConceptScore W4311137777C6604083 @default.
- W4311137777 hasConceptScore W4311137777C79974875 @default.
- W4311137777 hasLocation W43111377771 @default.
- W4311137777 hasOpenAccess W4311137777 @default.
- W4311137777 hasPrimaryLocation W43111377771 @default.
- W4311137777 hasRelatedWork W1537590089 @default.
- W4311137777 hasRelatedWork W1550223151 @default.
- W4311137777 hasRelatedWork W1980019406 @default.
- W4311137777 hasRelatedWork W2212135093 @default.
- W4311137777 hasRelatedWork W2472769502 @default.
- W4311137777 hasRelatedWork W2559524254 @default.
- W4311137777 hasRelatedWork W3153864189 @default.
- W4311137777 hasRelatedWork W4200131578 @default.
- W4311137777 hasRelatedWork W4224921875 @default.
- W4311137777 hasRelatedWork W4311137777 @default.
- W4311137777 hasVolume "19" @default.