Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311140980> ?p ?o ?g. }
- W4311140980 endingPage "106467" @default.
- W4311140980 startingPage "106467" @default.
- W4311140980 abstract "In light of the central role of crude oil in the economy and the complex mechanisms involved in forecasting crude oil prices, this study proposes a two-stage model that optimally selects driving predictors for crude oil price forecasting by integrating Granger causality test (GCT) and stochastic frontier analysis (SFA). In the first stage, GCT is used to perform causality assessments for 92 predictors across eight categories of factors (demand, supply, inventory, financial market, macroeconomy, economic policy uncertainty, geopolitical risk, and technical indicator). In the second stage, SFA is employed to assess the forecasting power of the preliminarily selected predictors in terms of technical efficiency by using multiple evaluation measures. By collecting a data sample which spans a 21-year period from January 1, 2000 to December 31, 2020, we conduct a comprehensive empirical study by employing rolling time window technique. The empirical results demonstrate that the two-stage model significantly outperforms eight competing models in terms of four forecasting techniques (linear regression, artificial neural network, support vector regression, and random forest). The proposed model's outperformance is robust to different time windows, different forecast horizons, alternative proxies of crude oil prices, and different business conditions. We also explore the time-varying characteristics of predictors for crude oil price forecasting and confirm that financial factors remain vital determinants affecting oil prices." @default.
- W4311140980 created "2022-12-23" @default.
- W4311140980 creator A5001691024 @default.
- W4311140980 creator A5004653216 @default.
- W4311140980 creator A5066999125 @default.
- W4311140980 creator A5084736929 @default.
- W4311140980 date "2023-01-01" @default.
- W4311140980 modified "2023-10-11" @default.
- W4311140980 title "An integrated model for crude oil forecasting: Causality assessment and technical efficiency" @default.
- W4311140980 cites W1201152205 @default.
- W4311140980 cites W1492887676 @default.
- W4311140980 cites W1505287894 @default.
- W4311140980 cites W1520841927 @default.
- W4311140980 cites W1592008448 @default.
- W4311140980 cites W1607114662 @default.
- W4311140980 cites W1974803093 @default.
- W4311140980 cites W1977845602 @default.
- W4311140980 cites W1983735795 @default.
- W4311140980 cites W1983961430 @default.
- W4311140980 cites W1984926111 @default.
- W4311140980 cites W2000624020 @default.
- W4311140980 cites W2012936212 @default.
- W4311140980 cites W2016210396 @default.
- W4311140980 cites W2017198586 @default.
- W4311140980 cites W2026327710 @default.
- W4311140980 cites W2033834012 @default.
- W4311140980 cites W2034700906 @default.
- W4311140980 cites W2035611161 @default.
- W4311140980 cites W2037889385 @default.
- W4311140980 cites W2052922122 @default.
- W4311140980 cites W2059614118 @default.
- W4311140980 cites W2063332242 @default.
- W4311140980 cites W2067417246 @default.
- W4311140980 cites W2069994291 @default.
- W4311140980 cites W2074988857 @default.
- W4311140980 cites W2077894872 @default.
- W4311140980 cites W2079104663 @default.
- W4311140980 cites W2089572977 @default.
- W4311140980 cites W2092880597 @default.
- W4311140980 cites W2113983529 @default.
- W4311140980 cites W2122825543 @default.
- W4311140980 cites W2126438535 @default.
- W4311140980 cites W2129906923 @default.
- W4311140980 cites W2134658143 @default.
- W4311140980 cites W2139116473 @default.
- W4311140980 cites W2144570112 @default.
- W4311140980 cites W2155261478 @default.
- W4311140980 cites W2178225550 @default.
- W4311140980 cites W2207756506 @default.
- W4311140980 cites W2265554768 @default.
- W4311140980 cites W2296364550 @default.
- W4311140980 cites W2526019064 @default.
- W4311140980 cites W2622999711 @default.
- W4311140980 cites W2728984718 @default.
- W4311140980 cites W2738727646 @default.
- W4311140980 cites W2758620441 @default.
- W4311140980 cites W2762142016 @default.
- W4311140980 cites W2766751685 @default.
- W4311140980 cites W2786501681 @default.
- W4311140980 cites W2789331854 @default.
- W4311140980 cites W2789580062 @default.
- W4311140980 cites W2792338922 @default.
- W4311140980 cites W2810839719 @default.
- W4311140980 cites W2874232692 @default.
- W4311140980 cites W2888133707 @default.
- W4311140980 cites W2888239842 @default.
- W4311140980 cites W2891089654 @default.
- W4311140980 cites W2898255909 @default.
- W4311140980 cites W2899346540 @default.
- W4311140980 cites W2911972536 @default.
- W4311140980 cites W2914117716 @default.
- W4311140980 cites W2956244202 @default.
- W4311140980 cites W2965618128 @default.
- W4311140980 cites W2971716595 @default.
- W4311140980 cites W2980564922 @default.
- W4311140980 cites W3006919236 @default.
- W4311140980 cites W3008527173 @default.
- W4311140980 cites W3121251852 @default.
- W4311140980 cites W3121292709 @default.
- W4311140980 cites W3121346496 @default.
- W4311140980 cites W3122070388 @default.
- W4311140980 cites W3122737497 @default.
- W4311140980 cites W3122810100 @default.
- W4311140980 cites W3123039549 @default.
- W4311140980 cites W3123416938 @default.
- W4311140980 cites W3124216392 @default.
- W4311140980 cites W3124230025 @default.
- W4311140980 cites W3124560411 @default.
- W4311140980 cites W3125199452 @default.
- W4311140980 cites W3125614253 @default.
- W4311140980 cites W3125771036 @default.
- W4311140980 cites W3126081245 @default.
- W4311140980 cites W3126125365 @default.
- W4311140980 cites W4235600450 @default.
- W4311140980 cites W4293247377 @default.
- W4311140980 doi "https://doi.org/10.1016/j.eneco.2022.106467" @default.
- W4311140980 hasPublicationYear "2023" @default.
- W4311140980 type Work @default.