Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311143191> ?p ?o ?g. }
- W4311143191 endingPage "105688" @default.
- W4311143191 startingPage "105688" @default.
- W4311143191 abstract "The existence of outliers and noise is one of the major causes of poor quality of the building performance data. Methods to address such abnormal data have received significant attention from several research interests including data-driven fault detection, diagnosis, and estimation (FDD&E), performance optimization, predictive modeling, pattern recognition of building power consumption, etc. However, there are many factors that may eventually lead to unreliable FDD&E results or data cleaning effects. For instance, the misconception of the statistical definition of outliers, the confusion about the concepts of outliers and noise, and the neglect of the potential impact of the outlier processing way on the study results, etc. This study gives an interpretation to the statistical definition of outliers using the domain knowledge in building energy systems. The outliers in the building performance data are classified into three categories. Based on such classification, an outlier management framework is developed to achieve reliable outlier detection results and accurate outlier estimates. In Case study 1, under the proposed outlier management framework, about 81.2%–88.6% of the power consumption observations can be identified as outliers or normal observations. In terms of the outlier estimation accuracy, the RMSE of the chiller/chilled water pumps/cooling water pumps power outlier estimation results can be limited to less than 5.2, 0.5 and 0.6 kWh. The results of Case study 1 show that the proposed outlier management framework is generic. The framework can help reducing unnecessary monitoring cost of the HVAC system. In Case study 2, proper outlier management method helps improve the chiller power prediction results. The RMSE of the Basic group, Method 1 group and Method 2 group power prediction results are 0.55, 0.54 and 0.2 kWh. The results of Case study 2 show that the proposed outlier management framework can contribute to improve the results reliability of building performance analysis related studies. In this study, an outlier management framework is developed for the building performance data. The proposed framework aims to improve the quality of the data cleaning work. In the following research, we would dedicate to improve the efficiency of the data cleaning work. In other word, to develop specific online outlier management algorithms for specific studies under the proposed framework." @default.
- W4311143191 created "2022-12-23" @default.
- W4311143191 creator A5027254300 @default.
- W4311143191 creator A5051105499 @default.
- W4311143191 creator A5080980425 @default.
- W4311143191 creator A5089802534 @default.
- W4311143191 date "2023-04-01" @default.
- W4311143191 modified "2023-09-27" @default.
- W4311143191 title "An outlier management framework for building performance data and its application to the power consumption data of building energy systems in non-residential buildings" @default.
- W4311143191 cites W1665457431 @default.
- W4311143191 cites W1881999183 @default.
- W4311143191 cites W1989330712 @default.
- W4311143191 cites W2003591606 @default.
- W4311143191 cites W2003951468 @default.
- W4311143191 cites W2017723190 @default.
- W4311143191 cites W2044501025 @default.
- W4311143191 cites W2050299018 @default.
- W4311143191 cites W2051224630 @default.
- W4311143191 cites W2167152259 @default.
- W4311143191 cites W2186290821 @default.
- W4311143191 cites W2206756254 @default.
- W4311143191 cites W2226418591 @default.
- W4311143191 cites W2471829290 @default.
- W4311143191 cites W2551722191 @default.
- W4311143191 cites W2653224493 @default.
- W4311143191 cites W2766304513 @default.
- W4311143191 cites W2767762556 @default.
- W4311143191 cites W2800588439 @default.
- W4311143191 cites W2804368419 @default.
- W4311143191 cites W2914544941 @default.
- W4311143191 cites W2922179643 @default.
- W4311143191 cites W2956849992 @default.
- W4311143191 cites W2957723078 @default.
- W4311143191 cites W2999491213 @default.
- W4311143191 cites W3010335229 @default.
- W4311143191 cites W3011632114 @default.
- W4311143191 cites W3016178113 @default.
- W4311143191 cites W3016453002 @default.
- W4311143191 cites W3033993664 @default.
- W4311143191 cites W3036110098 @default.
- W4311143191 cites W3043808834 @default.
- W4311143191 cites W3045641519 @default.
- W4311143191 cites W3083934914 @default.
- W4311143191 cites W3086340023 @default.
- W4311143191 cites W3088659404 @default.
- W4311143191 cites W3091873932 @default.
- W4311143191 cites W3097468641 @default.
- W4311143191 cites W3106680740 @default.
- W4311143191 cites W3197733704 @default.
- W4311143191 doi "https://doi.org/10.1016/j.jobe.2022.105688" @default.
- W4311143191 hasPublicationYear "2023" @default.
- W4311143191 type Work @default.
- W4311143191 citedByCount "0" @default.
- W4311143191 crossrefType "journal-article" @default.
- W4311143191 hasAuthorship W4311143191A5027254300 @default.
- W4311143191 hasAuthorship W4311143191A5051105499 @default.
- W4311143191 hasAuthorship W4311143191A5080980425 @default.
- W4311143191 hasAuthorship W4311143191A5089802534 @default.
- W4311143191 hasConcept C103742991 @default.
- W4311143191 hasConcept C119599485 @default.
- W4311143191 hasConcept C122346748 @default.
- W4311143191 hasConcept C124101348 @default.
- W4311143191 hasConcept C127413603 @default.
- W4311143191 hasConcept C154945302 @default.
- W4311143191 hasConcept C200601418 @default.
- W4311143191 hasConcept C2780165032 @default.
- W4311143191 hasConcept C41008148 @default.
- W4311143191 hasConcept C739882 @default.
- W4311143191 hasConcept C78519656 @default.
- W4311143191 hasConcept C79337645 @default.
- W4311143191 hasConceptScore W4311143191C103742991 @default.
- W4311143191 hasConceptScore W4311143191C119599485 @default.
- W4311143191 hasConceptScore W4311143191C122346748 @default.
- W4311143191 hasConceptScore W4311143191C124101348 @default.
- W4311143191 hasConceptScore W4311143191C127413603 @default.
- W4311143191 hasConceptScore W4311143191C154945302 @default.
- W4311143191 hasConceptScore W4311143191C200601418 @default.
- W4311143191 hasConceptScore W4311143191C2780165032 @default.
- W4311143191 hasConceptScore W4311143191C41008148 @default.
- W4311143191 hasConceptScore W4311143191C739882 @default.
- W4311143191 hasConceptScore W4311143191C78519656 @default.
- W4311143191 hasConceptScore W4311143191C79337645 @default.
- W4311143191 hasFunder F4320321001 @default.
- W4311143191 hasFunder F4320321630 @default.
- W4311143191 hasFunder F4320328642 @default.
- W4311143191 hasFunder F4320330668 @default.
- W4311143191 hasFunder F4320335787 @default.
- W4311143191 hasLocation W43111431911 @default.
- W4311143191 hasOpenAccess W4311143191 @default.
- W4311143191 hasPrimaryLocation W43111431911 @default.
- W4311143191 hasRelatedWork W1595351371 @default.
- W4311143191 hasRelatedWork W2029968811 @default.
- W4311143191 hasRelatedWork W2230433129 @default.
- W4311143191 hasRelatedWork W2359185137 @default.
- W4311143191 hasRelatedWork W2390515779 @default.
- W4311143191 hasRelatedWork W2606848831 @default.
- W4311143191 hasRelatedWork W2913362352 @default.
- W4311143191 hasRelatedWork W2998615029 @default.