Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311143650> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4311143650 endingPage "109893" @default.
- W4311143650 startingPage "109893" @default.
- W4311143650 abstract "Currently, one of the biggest challenges in modern traffic engineering is related to traffic state estimation (TSE). Although many machine learning and domain models can be used for TSE, they do not consider the sparsity and spatial dependence of traffic state variables. In this paper, we propose a hybrid soft computing model of two Gaussian conditional random field (GCRF) models for the inference of traffic speed, which is a relevant variable for TSE and travel information systems. The proposed model can infer the traffic state variables in large-scale networks whose nodes are geographically dispersed. Moreover, by combining a Gaussian conditional random field binary classification model (GCRFBC), which classifies traffic regimes as free-flow or potentially congested, and a regression GCRF model for the prediction of traffic speed in potentially congested traffic regimes, the model addresses two specifics of the problem: sparsity in traffic data, and the fact that observations are not independent. The proposed model was tested on two large-scale real-world networks in Serbia, namely an arterial E70-E75 335 km long highway stretch and the major ski resort Kopaonik with 55 km of ski slopes. In addition, the proposed model showed better prediction performance than several other unstructured and structured models." @default.
- W4311143650 created "2022-12-23" @default.
- W4311143650 creator A5025915374 @default.
- W4311143650 creator A5040662218 @default.
- W4311143650 creator A5057150812 @default.
- W4311143650 creator A5061400789 @default.
- W4311143650 creator A5073856473 @default.
- W4311143650 date "2023-01-01" @default.
- W4311143650 modified "2023-09-25" @default.
- W4311143650 title "Structured prediction of sparse dependent variables for traffic state estimation in large-scale networks" @default.
- W4311143650 cites W1496451467 @default.
- W4311143650 cites W1978644734 @default.
- W4311143650 cites W1996851706 @default.
- W4311143650 cites W2146507273 @default.
- W4311143650 cites W2314958813 @default.
- W4311143650 cites W2463787190 @default.
- W4311143650 cites W2561722812 @default.
- W4311143650 cites W2582812851 @default.
- W4311143650 cites W2593182953 @default.
- W4311143650 cites W2605264395 @default.
- W4311143650 cites W2626693359 @default.
- W4311143650 cites W2734394287 @default.
- W4311143650 cites W2891662583 @default.
- W4311143650 cites W2905967367 @default.
- W4311143650 cites W2916664939 @default.
- W4311143650 cites W2999712306 @default.
- W4311143650 cites W3137956598 @default.
- W4311143650 doi "https://doi.org/10.1016/j.asoc.2022.109893" @default.
- W4311143650 hasPublicationYear "2023" @default.
- W4311143650 type Work @default.
- W4311143650 citedByCount "0" @default.
- W4311143650 crossrefType "journal-article" @default.
- W4311143650 hasAuthorship W4311143650A5025915374 @default.
- W4311143650 hasAuthorship W4311143650A5040662218 @default.
- W4311143650 hasAuthorship W4311143650A5057150812 @default.
- W4311143650 hasAuthorship W4311143650A5061400789 @default.
- W4311143650 hasAuthorship W4311143650A5073856473 @default.
- W4311143650 hasConcept C121332964 @default.
- W4311143650 hasConcept C124101348 @default.
- W4311143650 hasConcept C152565575 @default.
- W4311143650 hasConcept C154945302 @default.
- W4311143650 hasConcept C163716315 @default.
- W4311143650 hasConcept C176715033 @default.
- W4311143650 hasConcept C202444582 @default.
- W4311143650 hasConcept C205649164 @default.
- W4311143650 hasConcept C207512268 @default.
- W4311143650 hasConcept C2776214188 @default.
- W4311143650 hasConcept C2778755073 @default.
- W4311143650 hasConcept C33923547 @default.
- W4311143650 hasConcept C38652104 @default.
- W4311143650 hasConcept C41008148 @default.
- W4311143650 hasConcept C58640448 @default.
- W4311143650 hasConcept C62520636 @default.
- W4311143650 hasConcept C79403827 @default.
- W4311143650 hasConcept C9652623 @default.
- W4311143650 hasConceptScore W4311143650C121332964 @default.
- W4311143650 hasConceptScore W4311143650C124101348 @default.
- W4311143650 hasConceptScore W4311143650C152565575 @default.
- W4311143650 hasConceptScore W4311143650C154945302 @default.
- W4311143650 hasConceptScore W4311143650C163716315 @default.
- W4311143650 hasConceptScore W4311143650C176715033 @default.
- W4311143650 hasConceptScore W4311143650C202444582 @default.
- W4311143650 hasConceptScore W4311143650C205649164 @default.
- W4311143650 hasConceptScore W4311143650C207512268 @default.
- W4311143650 hasConceptScore W4311143650C2776214188 @default.
- W4311143650 hasConceptScore W4311143650C2778755073 @default.
- W4311143650 hasConceptScore W4311143650C33923547 @default.
- W4311143650 hasConceptScore W4311143650C38652104 @default.
- W4311143650 hasConceptScore W4311143650C41008148 @default.
- W4311143650 hasConceptScore W4311143650C58640448 @default.
- W4311143650 hasConceptScore W4311143650C62520636 @default.
- W4311143650 hasConceptScore W4311143650C79403827 @default.
- W4311143650 hasConceptScore W4311143650C9652623 @default.
- W4311143650 hasLocation W43111436501 @default.
- W4311143650 hasOpenAccess W4311143650 @default.
- W4311143650 hasPrimaryLocation W43111436501 @default.
- W4311143650 hasRelatedWork W1526362251 @default.
- W4311143650 hasRelatedWork W2129232371 @default.
- W4311143650 hasRelatedWork W2161705504 @default.
- W4311143650 hasRelatedWork W2165073960 @default.
- W4311143650 hasRelatedWork W2754165133 @default.
- W4311143650 hasRelatedWork W2800507189 @default.
- W4311143650 hasRelatedWork W2964310643 @default.
- W4311143650 hasRelatedWork W3022161193 @default.
- W4311143650 hasRelatedWork W4239830733 @default.
- W4311143650 hasRelatedWork W4295602020 @default.
- W4311143650 hasVolume "133" @default.
- W4311143650 isParatext "false" @default.
- W4311143650 isRetracted "false" @default.
- W4311143650 workType "article" @default.