Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311146670> ?p ?o ?g. }
- W4311146670 endingPage "126928" @default.
- W4311146670 startingPage "126928" @default.
- W4311146670 abstract "To purify and recycle the low-carbon alcohols and acids in wastewater by a green method with high efficiency is of great significance in chemical engineering process, such as indirect coal liquefaction (Fischer Tropsch Synthesis, FTS), which produces a large amount of alcohol and acid-containing wastewater. Adsorption-desorption of low-carbon alcohols and acids in wastewater by activated carbon is a promising method for industrial application. The adsorption capacity of low-carbon alcohols and acids in activated carbons is closely related with their pore and surface properties. However, this was seldom studied due to the complex properties of carbon materials with different pore size, distribution and volume, as well as surface area and hydrophobicity. In this work, four commercial activated carbon materials (AC1 ∼ 4) with similar hydrophobicity and different pore and surface structure were chosen to explore the possible correlation of the adsorption capacity of C1-5 alcohols, C2-4 acids and FTS modeling wastewater. The batch method was used to investigate the adsorption capacity of AC1 ∼ 4 on low-carbon alcohols and acids as well as FTS modeling wastewater; while density functional theory (DFT) calculation was performed to investigate the adsorption energies of low-carbon alcohols and acids in carbon nanotubes with different pore sizes. Both the experimental and theoretical results indicate that the adsorption capacities of methanol, ethanol and acetic acid are strongly dependent on the ultra-micropores (<0.9 nm) due to their small molecular weight; and the adsorption capacity of pentanol is mainly determined by the surface areas due to its relatively high molecular weight and low polarity; while the adsorption capacities of C3-C4 alcohols and acids are well correlated with the microporous volume and surface area. In addition, and the adsorption capacities of acids were also related with the content of surface COOH species. AC2 has the highest adsorption capacity of mixed low-carbon alcohols and acids (196.2 mg/g) in FTS modeling wastewater due to its abundant ultra-micropore and high specific surface area. This work sheds light into the development of adsorbents with high adsorption capacity of low-carbon alcohols and acids, and provides solid experimental and theoretical support in the further purification of FTS wastewater and recovery of valuable chemicals." @default.
- W4311146670 created "2022-12-23" @default.
- W4311146670 creator A5000251609 @default.
- W4311146670 creator A5005727893 @default.
- W4311146670 creator A5022298216 @default.
- W4311146670 creator A5030872083 @default.
- W4311146670 creator A5044084507 @default.
- W4311146670 creator A5055162040 @default.
- W4311146670 creator A5055412183 @default.
- W4311146670 creator A5059325620 @default.
- W4311146670 creator A5064987921 @default.
- W4311146670 creator A5065236570 @default.
- W4311146670 creator A5067603962 @default.
- W4311146670 creator A5076409244 @default.
- W4311146670 date "2023-05-01" @default.
- W4311146670 modified "2023-10-18" @default.
- W4311146670 title "Experimental and theoretical study of the adsorption of mixed low carbon alcohols and acids from Fischer Tropsch synthesis wastewater by activated carbon" @default.
- W4311146670 cites W1968852411 @default.
- W4311146670 cites W1970127494 @default.
- W4311146670 cites W1981368803 @default.
- W4311146670 cites W1983639495 @default.
- W4311146670 cites W1983830299 @default.
- W4311146670 cites W1992008240 @default.
- W4311146670 cites W2000117089 @default.
- W4311146670 cites W2000179075 @default.
- W4311146670 cites W2010027958 @default.
- W4311146670 cites W2025338005 @default.
- W4311146670 cites W2031430816 @default.
- W4311146670 cites W2034536417 @default.
- W4311146670 cites W2036536547 @default.
- W4311146670 cites W2052660438 @default.
- W4311146670 cites W2053059088 @default.
- W4311146670 cites W2075858411 @default.
- W4311146670 cites W2076311075 @default.
- W4311146670 cites W2078086786 @default.
- W4311146670 cites W2087698390 @default.
- W4311146670 cites W2116426509 @default.
- W4311146670 cites W2121817924 @default.
- W4311146670 cites W2161952755 @default.
- W4311146670 cites W2261539492 @default.
- W4311146670 cites W2283694572 @default.
- W4311146670 cites W2467573712 @default.
- W4311146670 cites W2502830984 @default.
- W4311146670 cites W2586653397 @default.
- W4311146670 cites W2607773984 @default.
- W4311146670 cites W2790328515 @default.
- W4311146670 cites W2793226524 @default.
- W4311146670 cites W2884865148 @default.
- W4311146670 cites W2897308931 @default.
- W4311146670 cites W2910754795 @default.
- W4311146670 cites W2911137481 @default.
- W4311146670 cites W3004224837 @default.
- W4311146670 cites W3010737835 @default.
- W4311146670 cites W3014296000 @default.
- W4311146670 cites W3017066912 @default.
- W4311146670 cites W3032049417 @default.
- W4311146670 cites W3034548152 @default.
- W4311146670 cites W3049209354 @default.
- W4311146670 cites W3101544822 @default.
- W4311146670 cites W3107562807 @default.
- W4311146670 cites W3110845903 @default.
- W4311146670 cites W3155182974 @default.
- W4311146670 cites W3182250906 @default.
- W4311146670 cites W3191812408 @default.
- W4311146670 cites W3207196579 @default.
- W4311146670 cites W4200574286 @default.
- W4311146670 cites W4281689563 @default.
- W4311146670 doi "https://doi.org/10.1016/j.fuel.2022.126928" @default.
- W4311146670 hasPublicationYear "2023" @default.
- W4311146670 type Work @default.
- W4311146670 citedByCount "2" @default.
- W4311146670 countsByYear W43111466702023 @default.
- W4311146670 crossrefType "journal-article" @default.
- W4311146670 hasAuthorship W4311146670A5000251609 @default.
- W4311146670 hasAuthorship W4311146670A5005727893 @default.
- W4311146670 hasAuthorship W4311146670A5022298216 @default.
- W4311146670 hasAuthorship W4311146670A5030872083 @default.
- W4311146670 hasAuthorship W4311146670A5044084507 @default.
- W4311146670 hasAuthorship W4311146670A5055162040 @default.
- W4311146670 hasAuthorship W4311146670A5055412183 @default.
- W4311146670 hasAuthorship W4311146670A5059325620 @default.
- W4311146670 hasAuthorship W4311146670A5064987921 @default.
- W4311146670 hasAuthorship W4311146670A5065236570 @default.
- W4311146670 hasAuthorship W4311146670A5067603962 @default.
- W4311146670 hasAuthorship W4311146670A5076409244 @default.
- W4311146670 hasConcept C104779481 @default.
- W4311146670 hasConcept C127413603 @default.
- W4311146670 hasConcept C140205800 @default.
- W4311146670 hasConcept C150394285 @default.
- W4311146670 hasConcept C159985019 @default.
- W4311146670 hasConcept C162711632 @default.
- W4311146670 hasConcept C178790620 @default.
- W4311146670 hasConcept C185592680 @default.
- W4311146670 hasConcept C192562407 @default.
- W4311146670 hasConcept C2779607525 @default.
- W4311146670 hasConcept C2779647737 @default.
- W4311146670 hasConcept C42360764 @default.
- W4311146670 hasConcept C548081761 @default.