Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311147070> ?p ?o ?g. }
- W4311147070 endingPage "111536" @default.
- W4311147070 startingPage "111536" @default.
- W4311147070 abstract "Bayesian Belief Networks (BBNs) can be applied to solve inverse problems such as the post-mortem interval (PMI) by a simple and logical graphical representation of conditional dependencies between multiple taphonomic variables and the observable decomposition effect. This study is the first cross-comparison retrospective study of human decomposition across three different geographical regions. To assess the effect of the most influential taphonomic variables on the decomposition rate (as measured by the Total Decomposition Score (TDS)), decomposition data was examined from the Forensic Anthropology Research Facility at the University of Tennessee (n = 312), the Allegheny County Office of the Medical Examiner in Pittsburgh, US (n = 250), and the Crime Scene Investigation department at Southwest Forensics in the UK (n = 81). Two different BBNs for PMI estimations were created from the US and the UK training data. Sensitivity analysis was performed to identify the most influential parameters of TDS variance, with weaker variables (e.g., age, sex, clothing) being excluded during model refinement. The accuracy of the BBNs was then compared by additional validation cases: US (n = 28) and UK (n = 10). Both models conferred predictive power of the PMI and accounted for the unique combination of taphonomic variables affecting decomposition. Both models had a mean posterior probability of 86% (US) and 81% (UK) in favor of the experimental hypothesis (that the PMI was on, or less than, the prior last known alive date). Neither the US nor the UK datasets represented any cases below 'moderate' support for the value of PMI evidence. By applying coherent probabilistic reasoning to PMI estimations, one logical solution is provided to model the complexities of human decomposition that can quantify the combined effect of several uncertainties surrounding the PMI estimation. This approach communicates the PMI with an associated degree of confidence and provides predictive power on unknown PMI cases." @default.
- W4311147070 created "2022-12-23" @default.
- W4311147070 creator A5019589156 @default.
- W4311147070 creator A5031820363 @default.
- W4311147070 creator A5063616360 @default.
- W4311147070 creator A5073013767 @default.
- W4311147070 date "2023-01-01" @default.
- W4311147070 modified "2023-09-29" @default.
- W4311147070 title "Solving the inverse problem of post-mortem interval estimation using Bayesian Belief Networks" @default.
- W4311147070 cites W1518111731 @default.
- W4311147070 cites W1657150186 @default.
- W4311147070 cites W1835336216 @default.
- W4311147070 cites W1984886759 @default.
- W4311147070 cites W2012956571 @default.
- W4311147070 cites W2014200611 @default.
- W4311147070 cites W2036608422 @default.
- W4311147070 cites W2045423084 @default.
- W4311147070 cites W2067926606 @default.
- W4311147070 cites W2077121745 @default.
- W4311147070 cites W2121818672 @default.
- W4311147070 cites W2129119392 @default.
- W4311147070 cites W2129925306 @default.
- W4311147070 cites W2158250116 @default.
- W4311147070 cites W2548417608 @default.
- W4311147070 cites W2560729656 @default.
- W4311147070 cites W2571893225 @default.
- W4311147070 cites W2589699350 @default.
- W4311147070 cites W2624670819 @default.
- W4311147070 cites W2767935695 @default.
- W4311147070 cites W2778407650 @default.
- W4311147070 cites W2793479506 @default.
- W4311147070 cites W2794958022 @default.
- W4311147070 cites W2800088763 @default.
- W4311147070 cites W2896194820 @default.
- W4311147070 cites W2904641813 @default.
- W4311147070 cites W2910512322 @default.
- W4311147070 cites W2933655671 @default.
- W4311147070 cites W2947983515 @default.
- W4311147070 cites W3014303071 @default.
- W4311147070 cites W3017932208 @default.
- W4311147070 cites W3044444438 @default.
- W4311147070 cites W3046921947 @default.
- W4311147070 cites W3085490533 @default.
- W4311147070 cites W3143169507 @default.
- W4311147070 cites W3177535796 @default.
- W4311147070 cites W3215492606 @default.
- W4311147070 cites W4210900865 @default.
- W4311147070 cites W569554727 @default.
- W4311147070 cites W583716916 @default.
- W4311147070 doi "https://doi.org/10.1016/j.forsciint.2022.111536" @default.
- W4311147070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36508947" @default.
- W4311147070 hasPublicationYear "2023" @default.
- W4311147070 type Work @default.
- W4311147070 citedByCount "1" @default.
- W4311147070 countsByYear W43111470702023 @default.
- W4311147070 crossrefType "journal-article" @default.
- W4311147070 hasAuthorship W4311147070A5019589156 @default.
- W4311147070 hasAuthorship W4311147070A5031820363 @default.
- W4311147070 hasAuthorship W4311147070A5063616360 @default.
- W4311147070 hasAuthorship W4311147070A5073013767 @default.
- W4311147070 hasConcept C105795698 @default.
- W4311147070 hasConcept C107673813 @default.
- W4311147070 hasConcept C121955636 @default.
- W4311147070 hasConcept C124681953 @default.
- W4311147070 hasConcept C144133560 @default.
- W4311147070 hasConcept C154945302 @default.
- W4311147070 hasConcept C166957645 @default.
- W4311147070 hasConcept C176979668 @default.
- W4311147070 hasConcept C18903297 @default.
- W4311147070 hasConcept C196083921 @default.
- W4311147070 hasConcept C205649164 @default.
- W4311147070 hasConcept C33724603 @default.
- W4311147070 hasConcept C33923547 @default.
- W4311147070 hasConcept C41008148 @default.
- W4311147070 hasConcept C49937458 @default.
- W4311147070 hasConcept C57830394 @default.
- W4311147070 hasConcept C86803240 @default.
- W4311147070 hasConcept C96608239 @default.
- W4311147070 hasConceptScore W4311147070C105795698 @default.
- W4311147070 hasConceptScore W4311147070C107673813 @default.
- W4311147070 hasConceptScore W4311147070C121955636 @default.
- W4311147070 hasConceptScore W4311147070C124681953 @default.
- W4311147070 hasConceptScore W4311147070C144133560 @default.
- W4311147070 hasConceptScore W4311147070C154945302 @default.
- W4311147070 hasConceptScore W4311147070C166957645 @default.
- W4311147070 hasConceptScore W4311147070C176979668 @default.
- W4311147070 hasConceptScore W4311147070C18903297 @default.
- W4311147070 hasConceptScore W4311147070C196083921 @default.
- W4311147070 hasConceptScore W4311147070C205649164 @default.
- W4311147070 hasConceptScore W4311147070C33724603 @default.
- W4311147070 hasConceptScore W4311147070C33923547 @default.
- W4311147070 hasConceptScore W4311147070C41008148 @default.
- W4311147070 hasConceptScore W4311147070C49937458 @default.
- W4311147070 hasConceptScore W4311147070C57830394 @default.
- W4311147070 hasConceptScore W4311147070C86803240 @default.
- W4311147070 hasConceptScore W4311147070C96608239 @default.
- W4311147070 hasLocation W43111470701 @default.
- W4311147070 hasLocation W43111470702 @default.