Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311147668> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4311147668 endingPage "107545" @default.
- W4311147668 startingPage "107545" @default.
- W4311147668 abstract "Feather pecking (FP) is one of the primary welfare issues in commercial cage-free hen houses as that can seriously reduce the well-being of birds and cause economic losses for egg producers. After beak trimming is highly criticized in Europe and the USA, alternative methods are needed for pecking monitoring and management. A possibility for minimizing the problem is early detection of FP behaviors and damages to prevent it from spreading or increasing as feather pecking is a learned behavior. The objectives of this study were to develop a machine vision method, testing the performance of new models in tracking the pecking behaviors of hens and potential damages in the cage-free facilities and improve the detection accuracy of the model. Two YOLOv5 based deep learning models, i.e., YOLOv5s-pecking and YOLOv5x-pecking, were developed and compared in tracking FP behaviors of laying hens cage-free facilities. According the performance based on a dataset of 1924 images (1300 for training, 324 for validation, and 300 for testing), YOLOv5x-pecking model had a 3.1 %, 5.6 %, and 5.2 % higher performance in precision, recall, and Map than YOLOv5s-pecking model, respectively. However, YOLOv5s-pecking model size is 80 % smaller, and thus used 75 % less GPU memory and 80 % less time in model training than YOLOv5x-pecking model for the same dataset. Therefore, YOLOv5s-pecking model was considered with superior performance. This study was among the first to apply YOLOv5 models to track problematic behaviors of cage-free hens. The model provides a basis for developing a real-time automatic model for tracking pecking damages in commercial cage-free houses to protect the health and welfare of hundreds of millions laying hens." @default.
- W4311147668 created "2022-12-23" @default.
- W4311147668 creator A5039424213 @default.
- W4311147668 creator A5039657406 @default.
- W4311147668 creator A5056422462 @default.
- W4311147668 creator A5078679123 @default.
- W4311147668 date "2023-01-01" @default.
- W4311147668 modified "2023-10-18" @default.
- W4311147668 title "Tracking pecking behaviors and damages of cage-free laying hens with machine vision technologies" @default.
- W4311147668 cites W1995111802 @default.
- W4311147668 cites W2034332635 @default.
- W4311147668 cites W2069600161 @default.
- W4311147668 cites W2145600314 @default.
- W4311147668 cites W2179352600 @default.
- W4311147668 cites W2685792767 @default.
- W4311147668 cites W2765982206 @default.
- W4311147668 cites W2802974107 @default.
- W4311147668 cites W2904231924 @default.
- W4311147668 cites W2948218108 @default.
- W4311147668 cites W2954026066 @default.
- W4311147668 cites W3033078634 @default.
- W4311147668 cites W3037628983 @default.
- W4311147668 cites W3047873065 @default.
- W4311147668 cites W3095874559 @default.
- W4311147668 cites W3119042235 @default.
- W4311147668 cites W3157243312 @default.
- W4311147668 cites W3208294586 @default.
- W4311147668 cites W4220785870 @default.
- W4311147668 cites W4224235689 @default.
- W4311147668 cites W4225321635 @default.
- W4311147668 cites W4225792115 @default.
- W4311147668 cites W4226324148 @default.
- W4311147668 cites W4287219745 @default.
- W4311147668 cites W4290466588 @default.
- W4311147668 doi "https://doi.org/10.1016/j.compag.2022.107545" @default.
- W4311147668 hasPublicationYear "2023" @default.
- W4311147668 type Work @default.
- W4311147668 citedByCount "17" @default.
- W4311147668 countsByYear W43111476682023 @default.
- W4311147668 crossrefType "journal-article" @default.
- W4311147668 hasAuthorship W4311147668A5039424213 @default.
- W4311147668 hasAuthorship W4311147668A5039657406 @default.
- W4311147668 hasAuthorship W4311147668A5056422462 @default.
- W4311147668 hasAuthorship W4311147668A5078679123 @default.
- W4311147668 hasConcept C127413603 @default.
- W4311147668 hasConcept C154945302 @default.
- W4311147668 hasConcept C160272327 @default.
- W4311147668 hasConcept C18903297 @default.
- W4311147668 hasConcept C2778004798 @default.
- W4311147668 hasConcept C2780529513 @default.
- W4311147668 hasConcept C41008148 @default.
- W4311147668 hasConcept C44154836 @default.
- W4311147668 hasConcept C59485491 @default.
- W4311147668 hasConcept C66938386 @default.
- W4311147668 hasConcept C86803240 @default.
- W4311147668 hasConceptScore W4311147668C127413603 @default.
- W4311147668 hasConceptScore W4311147668C154945302 @default.
- W4311147668 hasConceptScore W4311147668C160272327 @default.
- W4311147668 hasConceptScore W4311147668C18903297 @default.
- W4311147668 hasConceptScore W4311147668C2778004798 @default.
- W4311147668 hasConceptScore W4311147668C2780529513 @default.
- W4311147668 hasConceptScore W4311147668C41008148 @default.
- W4311147668 hasConceptScore W4311147668C44154836 @default.
- W4311147668 hasConceptScore W4311147668C59485491 @default.
- W4311147668 hasConceptScore W4311147668C66938386 @default.
- W4311147668 hasConceptScore W4311147668C86803240 @default.
- W4311147668 hasLocation W43111476681 @default.
- W4311147668 hasOpenAccess W4311147668 @default.
- W4311147668 hasPrimaryLocation W43111476681 @default.
- W4311147668 hasRelatedWork W1988912362 @default.
- W4311147668 hasRelatedWork W2017266621 @default.
- W4311147668 hasRelatedWork W2082100632 @default.
- W4311147668 hasRelatedWork W2319082812 @default.
- W4311147668 hasRelatedWork W2777073047 @default.
- W4311147668 hasRelatedWork W2968845912 @default.
- W4311147668 hasRelatedWork W3009435571 @default.
- W4311147668 hasRelatedWork W3059437990 @default.
- W4311147668 hasRelatedWork W4220812622 @default.
- W4311147668 hasRelatedWork W4234636555 @default.
- W4311147668 hasVolume "204" @default.
- W4311147668 isParatext "false" @default.
- W4311147668 isRetracted "false" @default.
- W4311147668 workType "article" @default.