Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311148404> ?p ?o ?g. }
- W4311148404 endingPage "104428" @default.
- W4311148404 startingPage "104428" @default.
- W4311148404 abstract "Pathological diagnosis is the gold standard for disease assessment in clinical practice. It is conducted by inspecting the specimen at the microscopical level. Therefore, a very high-resolution pathological image that precisely describes the submicron-scale appearance is essential in the era of digital pathology, which is not easily obtained. Recently, pathological image super-resolution (SR) has shown promising prospects in bridging this gap. However, existing studies have not fully explored the peculiarity of pathological data, which contains several gradually enlarged images describing the specimen at different magnifications. In this paper, we propose a novel MMSRNet that formulates the pathological image SR in a multi-task learning way. It adds an image magnification classification branch on top of the CNN-based SR network, e.g., RCAN. Therefore, the learning objective is transformed into performing the SR while classifying the magnification as accurately as possible. The incorporated classification label guides the network to learn a more powerful feature representation. Meanwhile, the multi-task learning paradigm also encourages the joint learning of multi-scale mapping functions corresponding to multiple magnifications. It thus enables the learned model to adaptively accommodate the magnification variants, overcoming the problem that performing SR from different magnifications is treated as independent tasks in existing studies. Extensive experiments are conducted to validate the effectiveness of MMSRNet. It not only gains better performance in performing SR across magnifications and scaling factors, but also exhibits attractive plug-and-play nature when RCAN is substituted by other SR networks. The generated images are also supposed to be helpful in clinical diagnosis." @default.
- W4311148404 created "2022-12-23" @default.
- W4311148404 creator A5012235327 @default.
- W4311148404 creator A5049380192 @default.
- W4311148404 creator A5073175832 @default.
- W4311148404 creator A5088425743 @default.
- W4311148404 date "2023-03-01" @default.
- W4311148404 modified "2023-09-29" @default.
- W4311148404 title "MMSRNet: Pathological image super-resolution by multi-task and multi-scale learning" @default.
- W4311148404 cites W1885185971 @default.
- W4311148404 cites W2015193896 @default.
- W4311148404 cites W2098647776 @default.
- W4311148404 cites W2103243046 @default.
- W4311148404 cites W2111574404 @default.
- W4311148404 cites W2151608510 @default.
- W4311148404 cites W2470965540 @default.
- W4311148404 cites W2751723768 @default.
- W4311148404 cites W2772723798 @default.
- W4311148404 cites W2777277673 @default.
- W4311148404 cites W2901354392 @default.
- W4311148404 cites W2904591139 @default.
- W4311148404 cites W2912849458 @default.
- W4311148404 cites W2999684630 @default.
- W4311148404 cites W3013529009 @default.
- W4311148404 cites W3069245681 @default.
- W4311148404 cites W3113037872 @default.
- W4311148404 cites W3120961658 @default.
- W4311148404 cites W3126069796 @default.
- W4311148404 cites W3126104941 @default.
- W4311148404 cites W3127696710 @default.
- W4311148404 cites W3130107790 @default.
- W4311148404 cites W3153045660 @default.
- W4311148404 cites W3165822876 @default.
- W4311148404 cites W3173143314 @default.
- W4311148404 cites W3191703705 @default.
- W4311148404 cites W3209157908 @default.
- W4311148404 cites W4200301845 @default.
- W4311148404 cites W4206133222 @default.
- W4311148404 cites W4210960476 @default.
- W4311148404 cites W4297024819 @default.
- W4311148404 doi "https://doi.org/10.1016/j.bspc.2022.104428" @default.
- W4311148404 hasPublicationYear "2023" @default.
- W4311148404 type Work @default.
- W4311148404 citedByCount "0" @default.
- W4311148404 crossrefType "journal-article" @default.
- W4311148404 hasAuthorship W4311148404A5012235327 @default.
- W4311148404 hasAuthorship W4311148404A5049380192 @default.
- W4311148404 hasAuthorship W4311148404A5073175832 @default.
- W4311148404 hasAuthorship W4311148404A5088425743 @default.
- W4311148404 hasConcept C108583219 @default.
- W4311148404 hasConcept C115961682 @default.
- W4311148404 hasConcept C121332964 @default.
- W4311148404 hasConcept C138885662 @default.
- W4311148404 hasConcept C153180895 @default.
- W4311148404 hasConcept C154945302 @default.
- W4311148404 hasConcept C162324750 @default.
- W4311148404 hasConcept C187736073 @default.
- W4311148404 hasConcept C2776401178 @default.
- W4311148404 hasConcept C2778755073 @default.
- W4311148404 hasConcept C2780451532 @default.
- W4311148404 hasConcept C31972630 @default.
- W4311148404 hasConcept C41008148 @default.
- W4311148404 hasConcept C4144372 @default.
- W4311148404 hasConcept C41895202 @default.
- W4311148404 hasConcept C62520636 @default.
- W4311148404 hasConceptScore W4311148404C108583219 @default.
- W4311148404 hasConceptScore W4311148404C115961682 @default.
- W4311148404 hasConceptScore W4311148404C121332964 @default.
- W4311148404 hasConceptScore W4311148404C138885662 @default.
- W4311148404 hasConceptScore W4311148404C153180895 @default.
- W4311148404 hasConceptScore W4311148404C154945302 @default.
- W4311148404 hasConceptScore W4311148404C162324750 @default.
- W4311148404 hasConceptScore W4311148404C187736073 @default.
- W4311148404 hasConceptScore W4311148404C2776401178 @default.
- W4311148404 hasConceptScore W4311148404C2778755073 @default.
- W4311148404 hasConceptScore W4311148404C2780451532 @default.
- W4311148404 hasConceptScore W4311148404C31972630 @default.
- W4311148404 hasConceptScore W4311148404C41008148 @default.
- W4311148404 hasConceptScore W4311148404C4144372 @default.
- W4311148404 hasConceptScore W4311148404C41895202 @default.
- W4311148404 hasConceptScore W4311148404C62520636 @default.
- W4311148404 hasFunder F4320321001 @default.
- W4311148404 hasLocation W43111484041 @default.
- W4311148404 hasOpenAccess W4311148404 @default.
- W4311148404 hasPrimaryLocation W43111484041 @default.
- W4311148404 hasRelatedWork W1504288058 @default.
- W4311148404 hasRelatedWork W2017205855 @default.
- W4311148404 hasRelatedWork W2048505601 @default.
- W4311148404 hasRelatedWork W2116675934 @default.
- W4311148404 hasRelatedWork W2139751930 @default.
- W4311148404 hasRelatedWork W2167293474 @default.
- W4311148404 hasRelatedWork W2331674254 @default.
- W4311148404 hasRelatedWork W2544359817 @default.
- W4311148404 hasRelatedWork W2773120646 @default.
- W4311148404 hasRelatedWork W3042897387 @default.
- W4311148404 hasVolume "81" @default.
- W4311148404 isParatext "false" @default.
- W4311148404 isRetracted "false" @default.