Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311148602> ?p ?o ?g. }
- W4311148602 endingPage "102055" @default.
- W4311148602 startingPage "102055" @default.
- W4311148602 abstract "Artificial intelligence (AI), often known as machine learning, is a powerful tool for solving engineering problems. The evaluation of the network reliability of a flow network is a NP-hard problem, with computational effort growing exponentially with the number of nodes and arcs in the network. Also, the components assignment issue is NP-hard, and the computational effort increases with the number of available components. Many candidate solutions are typically examined during optimal components or optimal capacity assignment, each requiring reliability calculation. Consequently, this paper proposes an artificial neural network (ANN) predictive model to evaluate the flow network reliability. The neural network is one of the artificial intelligence tools constructed, trained, and validated using the maximum capacity of each component input and the network reliability as the target. The proposed ANN model provides empirical proof that neural networks can accurately estimate reliability by modeling the connection between the maximum capacities of network components and the reliability value." @default.
- W4311148602 created "2022-12-23" @default.
- W4311148602 creator A5006096296 @default.
- W4311148602 creator A5016118727 @default.
- W4311148602 creator A5058850046 @default.
- W4311148602 creator A5070618509 @default.
- W4311148602 creator A5084306484 @default.
- W4311148602 date "2023-08-01" @default.
- W4311148602 modified "2023-09-25" @default.
- W4311148602 title "Artificial intelligent applications for estimating flow network reliability" @default.
- W4311148602 cites W1106846160 @default.
- W4311148602 cites W1586335931 @default.
- W4311148602 cites W1601712886 @default.
- W4311148602 cites W1985342141 @default.
- W4311148602 cites W1993062444 @default.
- W4311148602 cites W2016210396 @default.
- W4311148602 cites W2024174021 @default.
- W4311148602 cites W2035066287 @default.
- W4311148602 cites W2043989561 @default.
- W4311148602 cites W2044355052 @default.
- W4311148602 cites W2057458709 @default.
- W4311148602 cites W2061948611 @default.
- W4311148602 cites W2070136552 @default.
- W4311148602 cites W2134858346 @default.
- W4311148602 cites W2147336456 @default.
- W4311148602 cites W2156261837 @default.
- W4311148602 cites W2167947550 @default.
- W4311148602 cites W2169848562 @default.
- W4311148602 cites W2180110293 @default.
- W4311148602 cites W2302321536 @default.
- W4311148602 cites W2772435906 @default.
- W4311148602 cites W2894821558 @default.
- W4311148602 cites W2912539634 @default.
- W4311148602 cites W2964089348 @default.
- W4311148602 cites W3003170190 @default.
- W4311148602 cites W3039690416 @default.
- W4311148602 cites W3082319905 @default.
- W4311148602 cites W3116612944 @default.
- W4311148602 cites W3128232888 @default.
- W4311148602 cites W3131554761 @default.
- W4311148602 cites W3134378765 @default.
- W4311148602 cites W3161586041 @default.
- W4311148602 cites W3163630086 @default.
- W4311148602 cites W3202802169 @default.
- W4311148602 cites W3211391605 @default.
- W4311148602 cites W4220846503 @default.
- W4311148602 doi "https://doi.org/10.1016/j.asej.2022.102055" @default.
- W4311148602 hasPublicationYear "2023" @default.
- W4311148602 type Work @default.
- W4311148602 citedByCount "0" @default.
- W4311148602 crossrefType "journal-article" @default.
- W4311148602 hasAuthorship W4311148602A5006096296 @default.
- W4311148602 hasAuthorship W4311148602A5016118727 @default.
- W4311148602 hasAuthorship W4311148602A5058850046 @default.
- W4311148602 hasAuthorship W4311148602A5070618509 @default.
- W4311148602 hasAuthorship W4311148602A5084306484 @default.
- W4311148602 hasBestOaLocation W43111486021 @default.
- W4311148602 hasConcept C104122410 @default.
- W4311148602 hasConcept C114809511 @default.
- W4311148602 hasConcept C119857082 @default.
- W4311148602 hasConcept C121332964 @default.
- W4311148602 hasConcept C126255220 @default.
- W4311148602 hasConcept C154945302 @default.
- W4311148602 hasConcept C163258240 @default.
- W4311148602 hasConcept C168167062 @default.
- W4311148602 hasConcept C33923547 @default.
- W4311148602 hasConcept C41008148 @default.
- W4311148602 hasConcept C43214815 @default.
- W4311148602 hasConcept C50644808 @default.
- W4311148602 hasConcept C62520636 @default.
- W4311148602 hasConcept C97355855 @default.
- W4311148602 hasConceptScore W4311148602C104122410 @default.
- W4311148602 hasConceptScore W4311148602C114809511 @default.
- W4311148602 hasConceptScore W4311148602C119857082 @default.
- W4311148602 hasConceptScore W4311148602C121332964 @default.
- W4311148602 hasConceptScore W4311148602C126255220 @default.
- W4311148602 hasConceptScore W4311148602C154945302 @default.
- W4311148602 hasConceptScore W4311148602C163258240 @default.
- W4311148602 hasConceptScore W4311148602C168167062 @default.
- W4311148602 hasConceptScore W4311148602C33923547 @default.
- W4311148602 hasConceptScore W4311148602C41008148 @default.
- W4311148602 hasConceptScore W4311148602C43214815 @default.
- W4311148602 hasConceptScore W4311148602C50644808 @default.
- W4311148602 hasConceptScore W4311148602C62520636 @default.
- W4311148602 hasConceptScore W4311148602C97355855 @default.
- W4311148602 hasFunder F4320323722 @default.
- W4311148602 hasIssue "8" @default.
- W4311148602 hasLocation W43111486021 @default.
- W4311148602 hasOpenAccess W4311148602 @default.
- W4311148602 hasPrimaryLocation W43111486021 @default.
- W4311148602 hasRelatedWork W2046856050 @default.
- W4311148602 hasRelatedWork W2049400789 @default.
- W4311148602 hasRelatedWork W2364139724 @default.
- W4311148602 hasRelatedWork W2379533788 @default.
- W4311148602 hasRelatedWork W2381812156 @default.
- W4311148602 hasRelatedWork W2544938793 @default.
- W4311148602 hasRelatedWork W2961085424 @default.
- W4311148602 hasRelatedWork W3080366447 @default.