Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311151930> ?p ?o ?g. }
- W4311151930 endingPage "15996" @default.
- W4311151930 startingPage "15996" @default.
- W4311151930 abstract "Traffic flow prediction is the basis and key to the realization of an intelligent transportation system. The road traffic flow prediction of city-level complex road network can be realized using traffic big data. In the traffic prediction task, the limitation of the convolutional neural network (CNN) for modeling the spatial relationship of the road network and the insufficient feature extraction of the shallow network make it impossible to accurately predict the traffic flow. In order to improve the prediction performance of the model, this paper proposes an improved capsule network (MCapsNet) based on capsule network (CapsNet). First, in the preliminary feature extraction stage, a depthwise separable convolutional block is added to expand the feature channel to enrich channel information. Subsequently, in order to strengthen the reuse of important features and suppress useless information, channel attention is used to selectively reinforce learning of extended channel information so that the network can extract a large number of high-dimensional important features and improve the ability of network feature learning and expression. At the same time, in order to alleviate the feature degradation during training and the channel collapse problem easily caused by deep convolution, a shortcut connection, and a modified linear bottleneck layer structure are added to the convolution layer. The bottleneck layer adds the depth convolution and channel attention connection to the residual block of the network. Finally, the deep local feature information extracted from the improved convolutional layer is vectorized into the form of a capsule, which can more accurately model the details of road network attributes and features and improve the model expression power and prediction performance. The network is tested on the Wenyi Road dataset and the public dataset SZ-taxi. Compared with other models, the evaluation indicators of MCapsNet are better than other models in the tests of different time periods and predictors. Compared with CapsNet, the RMSE index of MCapsNet is reduced by 10.50% in the full period of Wenyi Road, 4.66% in the peak period, 9.78% in the off-peak period, and 6.07% in the SZ-tax dataset. The experimental results verify the effectiveness of the model improvement." @default.
- W4311151930 created "2022-12-23" @default.
- W4311151930 creator A5010611229 @default.
- W4311151930 creator A5026605890 @default.
- W4311151930 date "2022-11-30" @default.
- W4311151930 modified "2023-10-18" @default.
- W4311151930 title "Research on Improved Traffic Flow Prediction Network Based on CapsNet" @default.
- W4311151930 cites W1973943669 @default.
- W4311151930 cites W2049952439 @default.
- W4311151930 cites W2069929199 @default.
- W4311151930 cites W2102252930 @default.
- W4311151930 cites W2572939427 @default.
- W4311151930 cites W2752782242 @default.
- W4311151930 cites W2782912001 @default.
- W4311151930 cites W2884604806 @default.
- W4311151930 cites W2901504064 @default.
- W4311151930 cites W2960280836 @default.
- W4311151930 cites W2963163009 @default.
- W4311151930 cites W2998649995 @default.
- W4311151930 cites W3003792425 @default.
- W4311151930 cites W3006276779 @default.
- W4311151930 cites W3007292677 @default.
- W4311151930 cites W3103720336 @default.
- W4311151930 cites W3126367810 @default.
- W4311151930 doi "https://doi.org/10.3390/su142315996" @default.
- W4311151930 hasPublicationYear "2022" @default.
- W4311151930 type Work @default.
- W4311151930 citedByCount "1" @default.
- W4311151930 countsByYear W43111519302023 @default.
- W4311151930 crossrefType "journal-article" @default.
- W4311151930 hasAuthorship W4311151930A5010611229 @default.
- W4311151930 hasAuthorship W4311151930A5026605890 @default.
- W4311151930 hasBestOaLocation W43111519301 @default.
- W4311151930 hasConcept C105795698 @default.
- W4311151930 hasConcept C108583219 @default.
- W4311151930 hasConcept C119857082 @default.
- W4311151930 hasConcept C124101348 @default.
- W4311151930 hasConcept C127162648 @default.
- W4311151930 hasConcept C138885662 @default.
- W4311151930 hasConcept C149635348 @default.
- W4311151930 hasConcept C153180895 @default.
- W4311151930 hasConcept C154945302 @default.
- W4311151930 hasConcept C207512268 @default.
- W4311151930 hasConcept C2524010 @default.
- W4311151930 hasConcept C2776401178 @default.
- W4311151930 hasConcept C2777210771 @default.
- W4311151930 hasConcept C2780513914 @default.
- W4311151930 hasConcept C2781089630 @default.
- W4311151930 hasConcept C31258907 @default.
- W4311151930 hasConcept C33923547 @default.
- W4311151930 hasConcept C41008148 @default.
- W4311151930 hasConcept C41895202 @default.
- W4311151930 hasConcept C45347329 @default.
- W4311151930 hasConcept C50644808 @default.
- W4311151930 hasConcept C52622490 @default.
- W4311151930 hasConcept C81363708 @default.
- W4311151930 hasConceptScore W4311151930C105795698 @default.
- W4311151930 hasConceptScore W4311151930C108583219 @default.
- W4311151930 hasConceptScore W4311151930C119857082 @default.
- W4311151930 hasConceptScore W4311151930C124101348 @default.
- W4311151930 hasConceptScore W4311151930C127162648 @default.
- W4311151930 hasConceptScore W4311151930C138885662 @default.
- W4311151930 hasConceptScore W4311151930C149635348 @default.
- W4311151930 hasConceptScore W4311151930C153180895 @default.
- W4311151930 hasConceptScore W4311151930C154945302 @default.
- W4311151930 hasConceptScore W4311151930C207512268 @default.
- W4311151930 hasConceptScore W4311151930C2524010 @default.
- W4311151930 hasConceptScore W4311151930C2776401178 @default.
- W4311151930 hasConceptScore W4311151930C2777210771 @default.
- W4311151930 hasConceptScore W4311151930C2780513914 @default.
- W4311151930 hasConceptScore W4311151930C2781089630 @default.
- W4311151930 hasConceptScore W4311151930C31258907 @default.
- W4311151930 hasConceptScore W4311151930C33923547 @default.
- W4311151930 hasConceptScore W4311151930C41008148 @default.
- W4311151930 hasConceptScore W4311151930C41895202 @default.
- W4311151930 hasConceptScore W4311151930C45347329 @default.
- W4311151930 hasConceptScore W4311151930C50644808 @default.
- W4311151930 hasConceptScore W4311151930C52622490 @default.
- W4311151930 hasConceptScore W4311151930C81363708 @default.
- W4311151930 hasFunder F4320338469 @default.
- W4311151930 hasIssue "23" @default.
- W4311151930 hasLocation W43111519301 @default.
- W4311151930 hasLocation W43111519302 @default.
- W4311151930 hasOpenAccess W4311151930 @default.
- W4311151930 hasPrimaryLocation W43111519301 @default.
- W4311151930 hasRelatedWork W2279398222 @default.
- W4311151930 hasRelatedWork W2295021132 @default.
- W4311151930 hasRelatedWork W2546942002 @default.
- W4311151930 hasRelatedWork W3156786002 @default.
- W4311151930 hasRelatedWork W4299822940 @default.
- W4311151930 hasRelatedWork W4312417841 @default.
- W4311151930 hasRelatedWork W4321369474 @default.
- W4311151930 hasRelatedWork W4323356875 @default.
- W4311151930 hasRelatedWork W4366492315 @default.
- W4311151930 hasRelatedWork W4386303287 @default.
- W4311151930 hasVolume "14" @default.
- W4311151930 isParatext "false" @default.
- W4311151930 isRetracted "false" @default.