Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311153905> ?p ?o ?g. }
- W4311153905 endingPage "4110" @default.
- W4311153905 startingPage "4110" @default.
- W4311153905 abstract "The existing rolling bearing fault diagnosis method based on the deep convolutional neural network has the issues of insufficient feature extraction ability, poor anti-noise ability, and a large number of model parameters. A lightweight bearing fault diagnosis method based on depthwise separable convolutions is proposed. The proposed method can simultaneously extract different features from vibration signals in different directions to enhance the stability of the diagnosis model. The lightweight unit based on depthwise separable convolutions in the feature extraction layer reduces the size of the model and the number of parameters that need to be learned. The vibration signals of bearings in different directions are converted into time-frequency signals by the short-time Fourier transform (STFT) and then into pictures as the input of the model. In order to verify the effectiveness and generalization of the method, this paper uses the gearbox data set of Southeast University and the CWRU (Case Western Reserve University) bearing data set for experiments. Comparisons of bearing fault diagnosis results using the proposed model with other classical deep learning models are implemented. The results show that the proposed model is superior to other classical deep learning models; thus, it has a smaller model size, higher accuracy, and less computation burden. Compared with using a single-direction vibration signal as input, the proposed model that uses multiple vibration signals in different directions as input has more accuracy." @default.
- W4311153905 created "2022-12-24" @default.
- W4311153905 creator A5034613739 @default.
- W4311153905 creator A5040827219 @default.
- W4311153905 creator A5043158952 @default.
- W4311153905 creator A5043430714 @default.
- W4311153905 creator A5060958969 @default.
- W4311153905 date "2022-12-09" @default.
- W4311153905 modified "2023-09-30" @default.
- W4311153905 title "A Lightweight Bearing Fault Diagnosis Method Based on Multi-Channel Depthwise Separable Convolutional Neural Network" @default.
- W4311153905 cites W2112796928 @default.
- W4311153905 cites W2194775991 @default.
- W4311153905 cites W2768753204 @default.
- W4311153905 cites W2809551536 @default.
- W4311153905 cites W2886755908 @default.
- W4311153905 cites W2887782657 @default.
- W4311153905 cites W2893464634 @default.
- W4311153905 cites W2898531359 @default.
- W4311153905 cites W2898760173 @default.
- W4311153905 cites W2920611841 @default.
- W4311153905 cites W2930258441 @default.
- W4311153905 cites W2931331224 @default.
- W4311153905 cites W2932115805 @default.
- W4311153905 cites W2946805823 @default.
- W4311153905 cites W2965625921 @default.
- W4311153905 cites W2989818023 @default.
- W4311153905 cites W3004760341 @default.
- W4311153905 cites W3005493426 @default.
- W4311153905 cites W3008309516 @default.
- W4311153905 cites W3008819860 @default.
- W4311153905 cites W3009747427 @default.
- W4311153905 cites W3015852309 @default.
- W4311153905 cites W3033236487 @default.
- W4311153905 cites W3041016892 @default.
- W4311153905 cites W3045546070 @default.
- W4311153905 cites W3046306269 @default.
- W4311153905 cites W3090238656 @default.
- W4311153905 cites W3094325960 @default.
- W4311153905 cites W3094346685 @default.
- W4311153905 cites W3117055840 @default.
- W4311153905 cites W3119995202 @default.
- W4311153905 cites W3135584819 @default.
- W4311153905 cites W3150857133 @default.
- W4311153905 cites W3164859490 @default.
- W4311153905 cites W3167979994 @default.
- W4311153905 cites W3177031903 @default.
- W4311153905 cites W3195802187 @default.
- W4311153905 cites W3202309904 @default.
- W4311153905 doi "https://doi.org/10.3390/electronics11244110" @default.
- W4311153905 hasPublicationYear "2022" @default.
- W4311153905 type Work @default.
- W4311153905 citedByCount "2" @default.
- W4311153905 countsByYear W43111539052023 @default.
- W4311153905 crossrefType "journal-article" @default.
- W4311153905 hasAuthorship W4311153905A5034613739 @default.
- W4311153905 hasAuthorship W4311153905A5040827219 @default.
- W4311153905 hasAuthorship W4311153905A5043158952 @default.
- W4311153905 hasAuthorship W4311153905A5043430714 @default.
- W4311153905 hasAuthorship W4311153905A5060958969 @default.
- W4311153905 hasBestOaLocation W43111539051 @default.
- W4311153905 hasConcept C102519508 @default.
- W4311153905 hasConcept C108583219 @default.
- W4311153905 hasConcept C11413529 @default.
- W4311153905 hasConcept C115961682 @default.
- W4311153905 hasConcept C121332964 @default.
- W4311153905 hasConcept C127162648 @default.
- W4311153905 hasConcept C127313418 @default.
- W4311153905 hasConcept C134306372 @default.
- W4311153905 hasConcept C153180895 @default.
- W4311153905 hasConcept C154945302 @default.
- W4311153905 hasConcept C165205528 @default.
- W4311153905 hasConcept C166386157 @default.
- W4311153905 hasConcept C175551986 @default.
- W4311153905 hasConcept C177148314 @default.
- W4311153905 hasConcept C198394728 @default.
- W4311153905 hasConcept C199978012 @default.
- W4311153905 hasConcept C203024314 @default.
- W4311153905 hasConcept C24890656 @default.
- W4311153905 hasConcept C31258907 @default.
- W4311153905 hasConcept C33923547 @default.
- W4311153905 hasConcept C41008148 @default.
- W4311153905 hasConcept C52622490 @default.
- W4311153905 hasConcept C81363708 @default.
- W4311153905 hasConcept C99498987 @default.
- W4311153905 hasConceptScore W4311153905C102519508 @default.
- W4311153905 hasConceptScore W4311153905C108583219 @default.
- W4311153905 hasConceptScore W4311153905C11413529 @default.
- W4311153905 hasConceptScore W4311153905C115961682 @default.
- W4311153905 hasConceptScore W4311153905C121332964 @default.
- W4311153905 hasConceptScore W4311153905C127162648 @default.
- W4311153905 hasConceptScore W4311153905C127313418 @default.
- W4311153905 hasConceptScore W4311153905C134306372 @default.
- W4311153905 hasConceptScore W4311153905C153180895 @default.
- W4311153905 hasConceptScore W4311153905C154945302 @default.
- W4311153905 hasConceptScore W4311153905C165205528 @default.
- W4311153905 hasConceptScore W4311153905C166386157 @default.
- W4311153905 hasConceptScore W4311153905C175551986 @default.
- W4311153905 hasConceptScore W4311153905C177148314 @default.