Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311153989> ?p ?o ?g. }
- W4311153989 abstract "Abstract Electric cable shovel (ECS) is a complex production equipment, which is widely utilized in open-pit mines. Rational valuations of load is the foundation for the development of intelligent or unmanned ECS, since it directly influences the planning of digging trajectories and energy consumption. Load prediction of ECS mainly consists of two types of methods: physics-based modeling and data-driven methods. The former approach is based on known physical laws, usually, it is necessarily approximations of reality due to incomplete knowledge of certain processes, which introduces bias. The latter captures features/patterns from data in an end-to-end manner without dwelling on domain expertise but requires a large amount of accurately labeled data to achieve generalization, which introduces variance. In addition, some parts of load are non-observable and latent, which cannot be measured from actual system sensing, so they can’t be predicted by data-driven methods. Herein, an innovative hybrid physics-informed deep neural network (HPINN) architecture, which combines physics-based models and data-driven methods to predict dynamic load of ECS, is presented. In the proposed framework, some parts of the theoretical model are incorporated, while capturing the difficult-to-model part by training a highly expressive approximator with data. Prior physics knowledge, such as Lagrangian mechanics and the conservation of energy, is considered extra constraints, and embedded in the overall loss function to enforce model training in a feasible solution space. The satisfactory performance of the proposed framework is verified through both synthetic and actual measurement dataset." @default.
- W4311153989 created "2022-12-24" @default.
- W4311153989 creator A5021083431 @default.
- W4311153989 creator A5071611991 @default.
- W4311153989 creator A5074943287 @default.
- W4311153989 creator A5078443563 @default.
- W4311153989 date "2022-12-01" @default.
- W4311153989 modified "2023-10-18" @default.
- W4311153989 title "Novel Hybrid Physics-Informed Deep Neural Network for Dynamic Load Prediction of Electric Cable Shovel" @default.
- W4311153989 cites W1965545285 @default.
- W4311153989 cites W1973323020 @default.
- W4311153989 cites W2007259116 @default.
- W4311153989 cites W2011286185 @default.
- W4311153989 cites W2055680739 @default.
- W4311153989 cites W2064675550 @default.
- W4311153989 cites W2075996211 @default.
- W4311153989 cites W2082988091 @default.
- W4311153989 cites W2093427812 @default.
- W4311153989 cites W2111688374 @default.
- W4311153989 cites W2117130368 @default.
- W4311153989 cites W2121963551 @default.
- W4311153989 cites W2135080672 @default.
- W4311153989 cites W2149350706 @default.
- W4311153989 cites W2805116596 @default.
- W4311153989 cites W2899283552 @default.
- W4311153989 cites W2902508499 @default.
- W4311153989 cites W2913159621 @default.
- W4311153989 cites W2954350473 @default.
- W4311153989 cites W3004137006 @default.
- W4311153989 cites W3037134996 @default.
- W4311153989 cites W3101546351 @default.
- W4311153989 cites W3154185195 @default.
- W4311153989 cites W3160258528 @default.
- W4311153989 cites W3164571460 @default.
- W4311153989 cites W3182506373 @default.
- W4311153989 cites W2075470077 @default.
- W4311153989 doi "https://doi.org/10.1186/s10033-022-00817-x" @default.
- W4311153989 hasPublicationYear "2022" @default.
- W4311153989 type Work @default.
- W4311153989 citedByCount "1" @default.
- W4311153989 countsByYear W43111539892023 @default.
- W4311153989 crossrefType "journal-article" @default.
- W4311153989 hasAuthorship W4311153989A5021083431 @default.
- W4311153989 hasAuthorship W4311153989A5071611991 @default.
- W4311153989 hasAuthorship W4311153989A5074943287 @default.
- W4311153989 hasAuthorship W4311153989A5078443563 @default.
- W4311153989 hasBestOaLocation W43111539891 @default.
- W4311153989 hasConcept C105795698 @default.
- W4311153989 hasConcept C111472728 @default.
- W4311153989 hasConcept C121332964 @default.
- W4311153989 hasConcept C121955636 @default.
- W4311153989 hasConcept C127413603 @default.
- W4311153989 hasConcept C13280743 @default.
- W4311153989 hasConcept C134306372 @default.
- W4311153989 hasConcept C138885662 @default.
- W4311153989 hasConcept C14036430 @default.
- W4311153989 hasConcept C144133560 @default.
- W4311153989 hasConcept C154945302 @default.
- W4311153989 hasConcept C177148314 @default.
- W4311153989 hasConcept C185798385 @default.
- W4311153989 hasConcept C186370098 @default.
- W4311153989 hasConcept C194583477 @default.
- W4311153989 hasConcept C196083921 @default.
- W4311153989 hasConcept C205649164 @default.
- W4311153989 hasConcept C2781458734 @default.
- W4311153989 hasConcept C33923547 @default.
- W4311153989 hasConcept C41008148 @default.
- W4311153989 hasConcept C50644808 @default.
- W4311153989 hasConcept C62520636 @default.
- W4311153989 hasConcept C78458016 @default.
- W4311153989 hasConcept C78519656 @default.
- W4311153989 hasConcept C81587630 @default.
- W4311153989 hasConcept C86803240 @default.
- W4311153989 hasConceptScore W4311153989C105795698 @default.
- W4311153989 hasConceptScore W4311153989C111472728 @default.
- W4311153989 hasConceptScore W4311153989C121332964 @default.
- W4311153989 hasConceptScore W4311153989C121955636 @default.
- W4311153989 hasConceptScore W4311153989C127413603 @default.
- W4311153989 hasConceptScore W4311153989C13280743 @default.
- W4311153989 hasConceptScore W4311153989C134306372 @default.
- W4311153989 hasConceptScore W4311153989C138885662 @default.
- W4311153989 hasConceptScore W4311153989C14036430 @default.
- W4311153989 hasConceptScore W4311153989C144133560 @default.
- W4311153989 hasConceptScore W4311153989C154945302 @default.
- W4311153989 hasConceptScore W4311153989C177148314 @default.
- W4311153989 hasConceptScore W4311153989C185798385 @default.
- W4311153989 hasConceptScore W4311153989C186370098 @default.
- W4311153989 hasConceptScore W4311153989C194583477 @default.
- W4311153989 hasConceptScore W4311153989C196083921 @default.
- W4311153989 hasConceptScore W4311153989C205649164 @default.
- W4311153989 hasConceptScore W4311153989C2781458734 @default.
- W4311153989 hasConceptScore W4311153989C33923547 @default.
- W4311153989 hasConceptScore W4311153989C41008148 @default.
- W4311153989 hasConceptScore W4311153989C50644808 @default.
- W4311153989 hasConceptScore W4311153989C62520636 @default.
- W4311153989 hasConceptScore W4311153989C78458016 @default.
- W4311153989 hasConceptScore W4311153989C78519656 @default.
- W4311153989 hasConceptScore W4311153989C81587630 @default.
- W4311153989 hasConceptScore W4311153989C86803240 @default.
- W4311153989 hasFunder F4320321001 @default.