Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311160904> ?p ?o ?g. }
- W4311160904 endingPage "9276" @default.
- W4311160904 startingPage "9276" @default.
- W4311160904 abstract "The direct reduction process has been developed and investigated in recent years due to less pollution than other methods. In this work, the first direct reduction iron oxide (DRI) modeling has been developed using artificial neural networks (ANN) algorithms such as the multilayer perceptron (MLP) and radial basis function (RBF) models. A DRI operation takes place inside the shaft furnace. A shaft furnace reactor is a gas-solid reactor that transforms iron oxide particles into sponge iron. Because of its low environmental pollution, the MIDREX process, one of the DRI procedures, has received much attention in recent years. The main purpose of the shaft furnace is to achieve the desired percentage of solid conversion output from the furnace. The network parameters were optimized, and an algorithm was developed to achieve an optimum NN model. The results showed that the MLP network has a minimum squared error (MSE) of 8.95 × 10−6, which is the lowest error compared to the RBF network model. The purpose of the study was to identify the shaft furnace solid conversion using machine learning methods without solving nonlinear equations. Another advantage of this research is that the running speed is 3.5 times the speed of mathematical modeling." @default.
- W4311160904 created "2022-12-24" @default.
- W4311160904 creator A5038709614 @default.
- W4311160904 creator A5079664614 @default.
- W4311160904 creator A5088904782 @default.
- W4311160904 creator A5090058664 @default.
- W4311160904 date "2022-12-07" @default.
- W4311160904 modified "2023-10-18" @default.
- W4311160904 title "Prediction of Solid Conversion Process in Direct Reduction Iron Oxide Using Machine Learning" @default.
- W4311160904 cites W1154702455 @default.
- W4311160904 cites W1579868427 @default.
- W4311160904 cites W1964319806 @default.
- W4311160904 cites W1969817389 @default.
- W4311160904 cites W1970023471 @default.
- W4311160904 cites W1974358373 @default.
- W4311160904 cites W1987149464 @default.
- W4311160904 cites W1994616650 @default.
- W4311160904 cites W2000444602 @default.
- W4311160904 cites W2002874998 @default.
- W4311160904 cites W2009410911 @default.
- W4311160904 cites W2010135533 @default.
- W4311160904 cites W2014176086 @default.
- W4311160904 cites W2015594164 @default.
- W4311160904 cites W2018219711 @default.
- W4311160904 cites W2018531839 @default.
- W4311160904 cites W2021110754 @default.
- W4311160904 cites W2021713741 @default.
- W4311160904 cites W2034903716 @default.
- W4311160904 cites W2043303393 @default.
- W4311160904 cites W2045387471 @default.
- W4311160904 cites W2071461436 @default.
- W4311160904 cites W2076892741 @default.
- W4311160904 cites W2086383354 @default.
- W4311160904 cites W2090877080 @default.
- W4311160904 cites W2091090321 @default.
- W4311160904 cites W2102954869 @default.
- W4311160904 cites W2156792094 @default.
- W4311160904 cites W2165326086 @default.
- W4311160904 cites W2511074346 @default.
- W4311160904 cites W2567680134 @default.
- W4311160904 cites W2583802795 @default.
- W4311160904 cites W2764120290 @default.
- W4311160904 cites W2810098895 @default.
- W4311160904 cites W2912864681 @default.
- W4311160904 cites W2981915020 @default.
- W4311160904 cites W3011233310 @default.
- W4311160904 cites W3025833334 @default.
- W4311160904 cites W3034115134 @default.
- W4311160904 cites W3106860847 @default.
- W4311160904 cites W3123133627 @default.
- W4311160904 cites W3165392608 @default.
- W4311160904 cites W3200094236 @default.
- W4311160904 cites W3205333002 @default.
- W4311160904 cites W3207857423 @default.
- W4311160904 cites W4205561506 @default.
- W4311160904 cites W4205847621 @default.
- W4311160904 cites W4206283275 @default.
- W4311160904 cites W4224282610 @default.
- W4311160904 cites W4226272820 @default.
- W4311160904 cites W4242197556 @default.
- W4311160904 cites W4247712068 @default.
- W4311160904 cites W4281557767 @default.
- W4311160904 cites W4291247376 @default.
- W4311160904 cites W4301498182 @default.
- W4311160904 doi "https://doi.org/10.3390/en15249276" @default.
- W4311160904 hasPublicationYear "2022" @default.
- W4311160904 type Work @default.
- W4311160904 citedByCount "2" @default.
- W4311160904 countsByYear W43111609042023 @default.
- W4311160904 crossrefType "journal-article" @default.
- W4311160904 hasAuthorship W4311160904A5038709614 @default.
- W4311160904 hasAuthorship W4311160904A5079664614 @default.
- W4311160904 hasAuthorship W4311160904A5088904782 @default.
- W4311160904 hasAuthorship W4311160904A5090058664 @default.
- W4311160904 hasBestOaLocation W43111609041 @default.
- W4311160904 hasConcept C105795698 @default.
- W4311160904 hasConcept C111335779 @default.
- W4311160904 hasConcept C111919701 @default.
- W4311160904 hasConcept C119857082 @default.
- W4311160904 hasConcept C121332964 @default.
- W4311160904 hasConcept C127413603 @default.
- W4311160904 hasConcept C139945424 @default.
- W4311160904 hasConcept C158622935 @default.
- W4311160904 hasConcept C179717631 @default.
- W4311160904 hasConcept C191897082 @default.
- W4311160904 hasConcept C192562407 @default.
- W4311160904 hasConcept C21880701 @default.
- W4311160904 hasConcept C24763909 @default.
- W4311160904 hasConcept C2524010 @default.
- W4311160904 hasConcept C2777697756 @default.
- W4311160904 hasConcept C33923547 @default.
- W4311160904 hasConcept C41008148 @default.
- W4311160904 hasConcept C42360764 @default.
- W4311160904 hasConcept C50644808 @default.
- W4311160904 hasConcept C60908668 @default.
- W4311160904 hasConcept C62520636 @default.
- W4311160904 hasConcept C98045186 @default.
- W4311160904 hasConcept C98856871 @default.