Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311167249> ?p ?o ?g. }
- W4311167249 abstract "ABSTRACT Background Correctly classifying early estrogen receptor-positive and HER2-negative (ER+/HER2) breast cancer (EBC) cases allows to propose an adapted adjuvant systemic treatment strategy. We developed a new AI-based tool to assess the risk of distant relapse at 5 years for ER+/HER2-EBC patients from pathological slides. Patients and Methods The discovery dataset (GrandTMA) included 1429 ER+/HER2-EBC patients, with long-term follow-up and an available hematoxylin-eosin and saffron (HES) whole slide image (WSI). A Deep Learning (DL) network was trained to predict metastasis free survival (MFS) at five years, based on the HES WSI only (termed RlapsRisk). A combined score was then built using RlapsRisk and well established prognostic factors. A threshold corresponding to a probability of MFS event of 5% at 5 years was applied to dichotomize patients into low or high-risk groups. The external validation, as well as assessment of the additional prognosis value of the DL model beyond standard clinico-pathologic factors were carried out on an independent, prospective cohort (CANTO, NCT01993498 ) including 889 HES WSI of ER+/HER2-EBC patients. Results RlapsRisk was an independent prognostic factor of MFS in multivariable analysis adjusted for established clinico-pathological factors (p<0.005 in GrandTMA and CANTO). Combining RlapsRisk score and the clinico-pathological factors improved the prognostic discrimination as compared to the clinico-pathological factors alone (increment of c-index in the validation set 0.80 versus 0.76, +0.04, p-value < 0.005). After dichotomization, the Combined Model showed a higher cumulative sensitivity on the entire population (0.76 vs 0.61) for an equal dynamic specificity (0.76) in comparison with the clinical score alone. Conclusions Our deep learning model developed on digitized HES slides provided additional prognostic information as compared to current clinico-pathological factors and has the potential of valuably informing the decision making process in the adjuvant setting when combined with current clinico-pathological factors." @default.
- W4311167249 created "2022-12-24" @default.
- W4311167249 creator A5001436435 @default.
- W4311167249 creator A5001789564 @default.
- W4311167249 creator A5005020343 @default.
- W4311167249 creator A5005321940 @default.
- W4311167249 creator A5009030272 @default.
- W4311167249 creator A5011227048 @default.
- W4311167249 creator A5013375339 @default.
- W4311167249 creator A5016739632 @default.
- W4311167249 creator A5017348036 @default.
- W4311167249 creator A5018206733 @default.
- W4311167249 creator A5022944122 @default.
- W4311167249 creator A5023040052 @default.
- W4311167249 creator A5029265730 @default.
- W4311167249 creator A5038934472 @default.
- W4311167249 creator A5038966248 @default.
- W4311167249 creator A5044050126 @default.
- W4311167249 creator A5045340901 @default.
- W4311167249 creator A5054166815 @default.
- W4311167249 creator A5056844302 @default.
- W4311167249 creator A5057775117 @default.
- W4311167249 creator A5059262584 @default.
- W4311167249 creator A5059474586 @default.
- W4311167249 creator A5059974991 @default.
- W4311167249 creator A5067735150 @default.
- W4311167249 creator A5073011726 @default.
- W4311167249 creator A5075331494 @default.
- W4311167249 creator A5081310956 @default.
- W4311167249 creator A5082334341 @default.
- W4311167249 creator A5083142899 @default.
- W4311167249 creator A5088575915 @default.
- W4311167249 creator A5089114288 @default.
- W4311167249 creator A5091774444 @default.
- W4311167249 date "2022-11-29" @default.
- W4311167249 modified "2023-09-27" @default.
- W4311167249 title "Deep Learning Allows Assessment of Risk of Metastatic Relapse from Invasive Breast Cancer Histological Slides" @default.
- W4311167249 cites W2082174016 @default.
- W4311167249 cites W2084139018 @default.
- W4311167249 cites W2113499049 @default.
- W4311167249 cites W2144535237 @default.
- W4311167249 cites W2150134401 @default.
- W4311167249 cites W2155802351 @default.
- W4311167249 cites W2190954851 @default.
- W4311167249 cites W2329659234 @default.
- W4311167249 cites W2487898712 @default.
- W4311167249 cites W2617077704 @default.
- W4311167249 cites W2761668583 @default.
- W4311167249 cites W2771177310 @default.
- W4311167249 cites W2784905247 @default.
- W4311167249 cites W2788523770 @default.
- W4311167249 cites W2805734855 @default.
- W4311167249 cites W2806634798 @default.
- W4311167249 cites W2889089723 @default.
- W4311167249 cites W2948923376 @default.
- W4311167249 cites W2963095307 @default.
- W4311167249 cites W2973061583 @default.
- W4311167249 cites W2978882452 @default.
- W4311167249 cites W2980243529 @default.
- W4311167249 cites W2995106101 @default.
- W4311167249 cites W2995334252 @default.
- W4311167249 cites W3036901136 @default.
- W4311167249 cites W3075287024 @default.
- W4311167249 cites W3128646645 @default.
- W4311167249 cites W3195714239 @default.
- W4311167249 cites W3200517016 @default.
- W4311167249 cites W3203189213 @default.
- W4311167249 cites W3206169364 @default.
- W4311167249 cites W4225270990 @default.
- W4311167249 cites W4294214983 @default.
- W4311167249 cites W928988364 @default.
- W4311167249 doi "https://doi.org/10.1101/2022.11.28.518158" @default.
- W4311167249 hasPublicationYear "2022" @default.
- W4311167249 type Work @default.
- W4311167249 citedByCount "0" @default.
- W4311167249 crossrefType "posted-content" @default.
- W4311167249 hasAuthorship W4311167249A5001436435 @default.
- W4311167249 hasAuthorship W4311167249A5001789564 @default.
- W4311167249 hasAuthorship W4311167249A5005020343 @default.
- W4311167249 hasAuthorship W4311167249A5005321940 @default.
- W4311167249 hasAuthorship W4311167249A5009030272 @default.
- W4311167249 hasAuthorship W4311167249A5011227048 @default.
- W4311167249 hasAuthorship W4311167249A5013375339 @default.
- W4311167249 hasAuthorship W4311167249A5016739632 @default.
- W4311167249 hasAuthorship W4311167249A5017348036 @default.
- W4311167249 hasAuthorship W4311167249A5018206733 @default.
- W4311167249 hasAuthorship W4311167249A5022944122 @default.
- W4311167249 hasAuthorship W4311167249A5023040052 @default.
- W4311167249 hasAuthorship W4311167249A5029265730 @default.
- W4311167249 hasAuthorship W4311167249A5038934472 @default.
- W4311167249 hasAuthorship W4311167249A5038966248 @default.
- W4311167249 hasAuthorship W4311167249A5044050126 @default.
- W4311167249 hasAuthorship W4311167249A5045340901 @default.
- W4311167249 hasAuthorship W4311167249A5054166815 @default.
- W4311167249 hasAuthorship W4311167249A5056844302 @default.
- W4311167249 hasAuthorship W4311167249A5057775117 @default.
- W4311167249 hasAuthorship W4311167249A5059262584 @default.
- W4311167249 hasAuthorship W4311167249A5059474586 @default.
- W4311167249 hasAuthorship W4311167249A5059974991 @default.
- W4311167249 hasAuthorship W4311167249A5067735150 @default.