Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311174152> ?p ?o ?g. }
- W4311174152 endingPage "100080" @default.
- W4311174152 startingPage "100080" @default.
- W4311174152 abstract "Forest is one of the most challenging environments to be recorded in a three-dimensional (3D) digitized geometrical representation, because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions. Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors. In practice, the ideal short-baseline observations, i.e., the dense collection mode, is rarely feasible, considering the low accessibility in forest environments and the commonly limited labor and time resources. The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations, are therefore more preferable and commonly applied. Nevertheless, the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets. Until now, a robust automated registration solution that is independent of special hardware requirements has still been missing. That is, the registration accuracy is still far from the required level, and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration. This paper proposes a discrete overlap search (DOS) method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds. The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level. An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels. The performance of the proposed method was evaluated using various accuracy criteria, as well as based on data acquired from different hardware, platforms, viewing perspectives, and at different points of time. The proposed method achieved a 3D registration accuracy at a 0.50-cm level in all difficulty categories using static terrestrial acquisitions. In the terrestrial-aerial registration, data sets were collected from different sensors and at different points of time with scene changes, and a registration accuracy at the raw data geometric accuracy level was achieved. These results represent the highest automated registration accuracy and the strictest evaluation so far. The proposed method is applicable in multiple scenarios, such as 1) the global positioning of individual under-canopy observations, which is one of the main challenges in applying terrestrial observations lacking a global context, 2) the fusion of point clouds acquired from terrestrial and aerial perspectives, which is required in order to achieve a complete forest observation, 3) mobile mapping using a new stop-and-go approach, which solves the problems of lacking mobility and slow data collection in static terrestrial measurements as well as the data-quality issue in the continuous mobile approach. Furthermore, this work proposes a new error estimate that units all parameter-level errors into a single quantity and compensates for the downsides of the widely used parameter- and object-level error estimates; it also proposes a new deterministic point sets registration method as an alternative to the popular sampling methods." @default.
- W4311174152 created "2022-12-24" @default.
- W4311174152 creator A5009027520 @default.
- W4311174152 creator A5018804090 @default.
- W4311174152 creator A5033042071 @default.
- W4311174152 creator A5034911498 @default.
- W4311174152 creator A5043014786 @default.
- W4311174152 creator A5045584015 @default.
- W4311174152 creator A5070189190 @default.
- W4311174152 creator A5076179044 @default.
- W4311174152 creator A5089640099 @default.
- W4311174152 date "2022-01-01" @default.
- W4311174152 modified "2023-10-16" @default.
- W4311174152 title "Automated registration of wide-baseline point clouds in forests using discrete overlap search" @default.
- W4311174152 cites W1760422680 @default.
- W4311174152 cites W1965777560 @default.
- W4311174152 cites W1965805571 @default.
- W4311174152 cites W1986104804 @default.
- W4311174152 cites W2001169620 @default.
- W4311174152 cites W2016929002 @default.
- W4311174152 cites W2091123161 @default.
- W4311174152 cites W2117965076 @default.
- W4311174152 cites W2128873520 @default.
- W4311174152 cites W2131439959 @default.
- W4311174152 cites W2134236847 @default.
- W4311174152 cites W2142853128 @default.
- W4311174152 cites W2146881125 @default.
- W4311174152 cites W2271206385 @default.
- W4311174152 cites W2280788228 @default.
- W4311174152 cites W2323876392 @default.
- W4311174152 cites W2396496785 @default.
- W4311174152 cites W2560074925 @default.
- W4311174152 cites W2566692295 @default.
- W4311174152 cites W2609825692 @default.
- W4311174152 cites W2754869336 @default.
- W4311174152 cites W2782807102 @default.
- W4311174152 cites W2808883217 @default.
- W4311174152 cites W2884197231 @default.
- W4311174152 cites W2898894047 @default.
- W4311174152 cites W2901059292 @default.
- W4311174152 cites W2905100780 @default.
- W4311174152 cites W2908794809 @default.
- W4311174152 cites W2941004385 @default.
- W4311174152 cites W2960144351 @default.
- W4311174152 cites W2995134806 @default.
- W4311174152 cites W3003488559 @default.
- W4311174152 cites W3013666356 @default.
- W4311174152 cites W3015971833 @default.
- W4311174152 cites W3034397105 @default.
- W4311174152 cites W3089962227 @default.
- W4311174152 cites W3116125684 @default.
- W4311174152 cites W3135149655 @default.
- W4311174152 cites W3153061876 @default.
- W4311174152 cites W3176260476 @default.
- W4311174152 cites W3201664588 @default.
- W4311174152 cites W4285065653 @default.
- W4311174152 doi "https://doi.org/10.1016/j.fecs.2022.100080" @default.
- W4311174152 hasPublicationYear "2022" @default.
- W4311174152 type Work @default.
- W4311174152 citedByCount "0" @default.
- W4311174152 crossrefType "journal-article" @default.
- W4311174152 hasAuthorship W4311174152A5009027520 @default.
- W4311174152 hasAuthorship W4311174152A5018804090 @default.
- W4311174152 hasAuthorship W4311174152A5033042071 @default.
- W4311174152 hasAuthorship W4311174152A5034911498 @default.
- W4311174152 hasAuthorship W4311174152A5043014786 @default.
- W4311174152 hasAuthorship W4311174152A5045584015 @default.
- W4311174152 hasAuthorship W4311174152A5070189190 @default.
- W4311174152 hasAuthorship W4311174152A5076179044 @default.
- W4311174152 hasAuthorship W4311174152A5089640099 @default.
- W4311174152 hasBestOaLocation W43111741521 @default.
- W4311174152 hasConcept C111368507 @default.
- W4311174152 hasConcept C111919701 @default.
- W4311174152 hasConcept C124101348 @default.
- W4311174152 hasConcept C12725497 @default.
- W4311174152 hasConcept C127313418 @default.
- W4311174152 hasConcept C131979681 @default.
- W4311174152 hasConcept C138885662 @default.
- W4311174152 hasConcept C154945302 @default.
- W4311174152 hasConcept C205649164 @default.
- W4311174152 hasConcept C2524010 @default.
- W4311174152 hasConcept C2776401178 @default.
- W4311174152 hasConcept C28719098 @default.
- W4311174152 hasConcept C33923547 @default.
- W4311174152 hasConcept C41008148 @default.
- W4311174152 hasConcept C41895202 @default.
- W4311174152 hasConcept C62649853 @default.
- W4311174152 hasConcept C79974875 @default.
- W4311174152 hasConceptScore W4311174152C111368507 @default.
- W4311174152 hasConceptScore W4311174152C111919701 @default.
- W4311174152 hasConceptScore W4311174152C124101348 @default.
- W4311174152 hasConceptScore W4311174152C12725497 @default.
- W4311174152 hasConceptScore W4311174152C127313418 @default.
- W4311174152 hasConceptScore W4311174152C131979681 @default.
- W4311174152 hasConceptScore W4311174152C138885662 @default.
- W4311174152 hasConceptScore W4311174152C154945302 @default.
- W4311174152 hasConceptScore W4311174152C205649164 @default.
- W4311174152 hasConceptScore W4311174152C2524010 @default.