Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311174927> ?p ?o ?g. }
- W4311174927 endingPage "104766" @default.
- W4311174927 startingPage "104766" @default.
- W4311174927 abstract "The Caatinga, a Brazilian dry tropical forest that sheds its leaves seasonally, harbors diverse lignocellulose-degrading microbes as a valuable source of lignin-modifying enzymes useful for the chemical and biofuel industry. Nonetheless, the detailed process of lignin decomposition in soils is still poorly understood due to most studies focusing on the biodegradation of non-ligninolytic components of plant biomass (i.e., cellulose, hemicellulose, and oligosaccharides). Hence, the microbial dynamic was investigated in kraft lignin (KL) amended soil microcosms incubated at 45 °C for 9, 18, and 27 days. The changes in the GC-MS profile indicated rapid and complete biodegradation of lignin-derived compounds (i.e., phenol, guaiacol, paracyclophane, eugenol, benzene, ethisterone, and methadone N-oxide) by the microbial ligninolytic systems. Metabarcoding analyses showed that species richness (Chao 1 index from 14313,6 ± 338 to 7230,4 ± 1056) and diversity (H′ index from 7,9 ± 0,05 to 5,6 ± 0,6) decreased in response to KL addition. However, the bacterial diversity was stabilized from the 18th to the 27th day, shaping a soil bacterial community dominated by members of the Proteobacteria (Bordetella and Roseomonas), Firmicutes (Bacillus, Pullulanibacillus, Lysinibacillus, Cohnela, and Ornithinibacilus), and Actinobacteria (Isoptericola, Saccharomonospora, and Beutenbergia) phyla, some of which have not yet been reported as able to degrade lignin. Although the KL addition has promoted the extinction of microbial taxa, the co-occurrence networks reveal high modularity values (0.92) of the microbial structure in the 18th and 27th days of KL-amended soil microcosms, indicating metabolic plasticity even with the ecological disturbance. Some individual taxa clustering into more distinct modules might be explained by the emergence of new ecological niches resulting from the heterogeneous features of KL. Metagenome-based evidence suggests that key bacterial (Bordetella and Streptomyces), and fungal (Aspergillus) members may play synergistic ecophysiological roles in decomposing lignin-derived compounds by carrying the most genes encoding lignin-modifying enzymes belonging to the auxiliary activity (AA) family. The great increase of Aspergillus-affiliated genes of the AA9 family (log ratio of 1.46), which includes the copper-dependent lytic polysaccharide monooxygenases (LPMOs), suggests a key role in lignin-derived compounds degradation. Overall, the insights gathered herein reveal the microbial dynamics of a tropical dry forest soil in kraft lignin-amended microcosms and open perspectives for a rational exploration of potentially novel enzymes and microbial candidates for biotechnological applications." @default.
- W4311174927 created "2022-12-24" @default.
- W4311174927 creator A5022055636 @default.
- W4311174927 creator A5040574002 @default.
- W4311174927 creator A5050792746 @default.
- W4311174927 creator A5051037574 @default.
- W4311174927 creator A5064417969 @default.
- W4311174927 creator A5070530366 @default.
- W4311174927 creator A5073302748 @default.
- W4311174927 creator A5080457829 @default.
- W4311174927 creator A5087089766 @default.
- W4311174927 date "2023-03-01" @default.
- W4311174927 modified "2023-10-16" @default.
- W4311174927 title "Taxonomic and functional dynamics of the soil microbiome from a tropical dry forest in kraft lignin-amended microcosms" @default.
- W4311174927 cites W1603517646 @default.
- W4311174927 cites W1616879796 @default.
- W4311174927 cites W1701869895 @default.
- W4311174927 cites W1966623514 @default.
- W4311174927 cites W1976869099 @default.
- W4311174927 cites W1984283607 @default.
- W4311174927 cites W1987061067 @default.
- W4311174927 cites W1995145217 @default.
- W4311174927 cites W2003604861 @default.
- W4311174927 cites W2005291574 @default.
- W4311174927 cites W2007177054 @default.
- W4311174927 cites W2007318238 @default.
- W4311174927 cites W2014252171 @default.
- W4311174927 cites W2032033915 @default.
- W4311174927 cites W2034285706 @default.
- W4311174927 cites W2036897871 @default.
- W4311174927 cites W2039875881 @default.
- W4311174927 cites W2045204781 @default.
- W4311174927 cites W2045922023 @default.
- W4311174927 cites W2056279562 @default.
- W4311174927 cites W2059670662 @default.
- W4311174927 cites W2060411194 @default.
- W4311174927 cites W2064671512 @default.
- W4311174927 cites W2079359179 @default.
- W4311174927 cites W2084399684 @default.
- W4311174927 cites W2085119196 @default.
- W4311174927 cites W2088945101 @default.
- W4311174927 cites W2092389736 @default.
- W4311174927 cites W2098413409 @default.
- W4311174927 cites W2108234281 @default.
- W4311174927 cites W2108929776 @default.
- W4311174927 cites W2113679889 @default.
- W4311174927 cites W2122559203 @default.
- W4311174927 cites W2130684282 @default.
- W4311174927 cites W2131271579 @default.
- W4311174927 cites W2138913478 @default.
- W4311174927 cites W2140775467 @default.
- W4311174927 cites W2143485490 @default.
- W4311174927 cites W2145471374 @default.
- W4311174927 cites W2147538849 @default.
- W4311174927 cites W2148663653 @default.
- W4311174927 cites W2148938069 @default.
- W4311174927 cites W2155286911 @default.
- W4311174927 cites W2163250554 @default.
- W4311174927 cites W2163642241 @default.
- W4311174927 cites W2167046694 @default.
- W4311174927 cites W2167900622 @default.
- W4311174927 cites W2170551349 @default.
- W4311174927 cites W2179438025 @default.
- W4311174927 cites W2307400077 @default.
- W4311174927 cites W2337747100 @default.
- W4311174927 cites W2401404581 @default.
- W4311174927 cites W2512643090 @default.
- W4311174927 cites W2552110755 @default.
- W4311174927 cites W2561026218 @default.
- W4311174927 cites W2588494416 @default.
- W4311174927 cites W2590125243 @default.
- W4311174927 cites W2748795411 @default.
- W4311174927 cites W2787554268 @default.
- W4311174927 cites W2789229938 @default.
- W4311174927 cites W2803099890 @default.
- W4311174927 cites W2889653019 @default.
- W4311174927 cites W2892210670 @default.
- W4311174927 cites W2915117860 @default.
- W4311174927 cites W2934567818 @default.
- W4311174927 cites W2950413189 @default.
- W4311174927 cites W3021537362 @default.
- W4311174927 cites W3083462529 @default.
- W4311174927 cites W3117201083 @default.
- W4311174927 cites W4242729757 @default.
- W4311174927 doi "https://doi.org/10.1016/j.apsoil.2022.104766" @default.
- W4311174927 hasPublicationYear "2023" @default.
- W4311174927 type Work @default.
- W4311174927 citedByCount "0" @default.
- W4311174927 crossrefType "journal-article" @default.
- W4311174927 hasAuthorship W4311174927A5022055636 @default.
- W4311174927 hasAuthorship W4311174927A5040574002 @default.
- W4311174927 hasAuthorship W4311174927A5050792746 @default.
- W4311174927 hasAuthorship W4311174927A5051037574 @default.
- W4311174927 hasAuthorship W4311174927A5064417969 @default.
- W4311174927 hasAuthorship W4311174927A5070530366 @default.
- W4311174927 hasAuthorship W4311174927A5073302748 @default.
- W4311174927 hasAuthorship W4311174927A5080457829 @default.
- W4311174927 hasAuthorship W4311174927A5087089766 @default.