Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311180314> ?p ?o ?g. }
- W4311180314 endingPage "e0278759" @default.
- W4311180314 startingPage "e0278759" @default.
- W4311180314 abstract "Aims Understanding atypical forms of diabetes (AD) may advance precision medicine, but methods to identify such patients are needed. We propose an electronic health record (EHR)-based algorithmic approach to identify patients who may have AD, specifically those with insulin-sufficient, non-metabolic diabetes, in order to improve feasibility of identifying these patients through detailed chart review. Methods Patients with likely T2D were selected using a validated machine-learning (ML) algorithm applied to EHR data. “Typical” T2D cases were removed by excluding individuals with obesity, evidence of dyslipidemia, antibody-positive diabetes, or cystic fibrosis. To filter out likely type 1 diabetes (T1D) cases, we applied six additional “branch algorithms,” relying on various clinical characteristics, which resulted in six overlapping cohorts. Diabetes type was classified by manual chart review as atypical, not atypical, or indeterminate due to missing information. Results Of 114,975 biobank participants, the algorithms collectively identified 119 (0.1%) potential AD cases, of which 16 (0.014%) were confirmed after expert review. The branch algorithm that excluded T1D based on outpatient insulin use had the highest percentage yield of AD (13 of 27; 48.2% yield). Together, the 16 AD cases had significantly lower BMI and higher HDL than either unselected T1D or T2D cases identified by ML algorithms ( P <0.05). Compared to the ML T1D group, the AD group had a significantly higher T2D polygenic score ( P <0.01) and lower hemoglobin A1c ( P <0.01). Conclusion Our EHR-based algorithms followed by manual chart review identified collectively 16 individuals with AD, representing 0.22% of biobank enrollees with T2D. With a maximum yield of 48% cases after manual chart review, our algorithms have the potential to drastically improve efficiency of AD identification. Recognizing patients with AD may inform on the heterogeneity of T2D and facilitate enrollment in studies like the Rare and Atypical Diabetes Network (RADIANT)." @default.
- W4311180314 created "2022-12-24" @default.
- W4311180314 creator A5006662813 @default.
- W4311180314 creator A5007935699 @default.
- W4311180314 creator A5015216742 @default.
- W4311180314 creator A5020051034 @default.
- W4311180314 creator A5023110445 @default.
- W4311180314 creator A5032613596 @default.
- W4311180314 creator A5047478353 @default.
- W4311180314 creator A5062262355 @default.
- W4311180314 creator A5083013456 @default.
- W4311180314 creator A5084953114 @default.
- W4311180314 date "2022-12-12" @default.
- W4311180314 modified "2023-09-25" @default.
- W4311180314 title "Algorithmic identification of atypical diabetes in electronic health record (EHR) systems" @default.
- W4311180314 cites W1978116054 @default.
- W4311180314 cites W1993576079 @default.
- W4311180314 cites W2101071243 @default.
- W4311180314 cites W2161633633 @default.
- W4311180314 cites W2163104142 @default.
- W4311180314 cites W2171019352 @default.
- W4311180314 cites W2234524676 @default.
- W4311180314 cites W2510973425 @default.
- W4311180314 cites W2511515754 @default.
- W4311180314 cites W2586927659 @default.
- W4311180314 cites W2659296870 @default.
- W4311180314 cites W2769286440 @default.
- W4311180314 cites W2782122064 @default.
- W4311180314 cites W2795064071 @default.
- W4311180314 cites W2890555481 @default.
- W4311180314 cites W2894662039 @default.
- W4311180314 cites W2909847496 @default.
- W4311180314 cites W2948864549 @default.
- W4311180314 cites W2951553270 @default.
- W4311180314 cites W3035076933 @default.
- W4311180314 cites W3081422974 @default.
- W4311180314 cites W3110943555 @default.
- W4311180314 cites W3126160703 @default.
- W4311180314 cites W3184624675 @default.
- W4311180314 cites W3212584598 @default.
- W4311180314 cites W4238714725 @default.
- W4311180314 doi "https://doi.org/10.1371/journal.pone.0278759" @default.
- W4311180314 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36508462" @default.
- W4311180314 hasPublicationYear "2022" @default.
- W4311180314 type Work @default.
- W4311180314 citedByCount "0" @default.
- W4311180314 crossrefType "journal-article" @default.
- W4311180314 hasAuthorship W4311180314A5006662813 @default.
- W4311180314 hasAuthorship W4311180314A5007935699 @default.
- W4311180314 hasAuthorship W4311180314A5015216742 @default.
- W4311180314 hasAuthorship W4311180314A5020051034 @default.
- W4311180314 hasAuthorship W4311180314A5023110445 @default.
- W4311180314 hasAuthorship W4311180314A5032613596 @default.
- W4311180314 hasAuthorship W4311180314A5047478353 @default.
- W4311180314 hasAuthorship W4311180314A5062262355 @default.
- W4311180314 hasAuthorship W4311180314A5083013456 @default.
- W4311180314 hasAuthorship W4311180314A5084953114 @default.
- W4311180314 hasBestOaLocation W43111803141 @default.
- W4311180314 hasConcept C11413529 @default.
- W4311180314 hasConcept C116567970 @default.
- W4311180314 hasConcept C126322002 @default.
- W4311180314 hasConcept C134018914 @default.
- W4311180314 hasConcept C160735492 @default.
- W4311180314 hasConcept C162324750 @default.
- W4311180314 hasConcept C195910791 @default.
- W4311180314 hasConcept C2777180221 @default.
- W4311180314 hasConcept C2778096610 @default.
- W4311180314 hasConcept C2781232474 @default.
- W4311180314 hasConcept C3019952477 @default.
- W4311180314 hasConcept C3020144179 @default.
- W4311180314 hasConcept C41008148 @default.
- W4311180314 hasConcept C50522688 @default.
- W4311180314 hasConcept C511355011 @default.
- W4311180314 hasConcept C555293320 @default.
- W4311180314 hasConcept C60644358 @default.
- W4311180314 hasConcept C71924100 @default.
- W4311180314 hasConcept C86803240 @default.
- W4311180314 hasConceptScore W4311180314C11413529 @default.
- W4311180314 hasConceptScore W4311180314C116567970 @default.
- W4311180314 hasConceptScore W4311180314C126322002 @default.
- W4311180314 hasConceptScore W4311180314C134018914 @default.
- W4311180314 hasConceptScore W4311180314C160735492 @default.
- W4311180314 hasConceptScore W4311180314C162324750 @default.
- W4311180314 hasConceptScore W4311180314C195910791 @default.
- W4311180314 hasConceptScore W4311180314C2777180221 @default.
- W4311180314 hasConceptScore W4311180314C2778096610 @default.
- W4311180314 hasConceptScore W4311180314C2781232474 @default.
- W4311180314 hasConceptScore W4311180314C3019952477 @default.
- W4311180314 hasConceptScore W4311180314C3020144179 @default.
- W4311180314 hasConceptScore W4311180314C41008148 @default.
- W4311180314 hasConceptScore W4311180314C50522688 @default.
- W4311180314 hasConceptScore W4311180314C511355011 @default.
- W4311180314 hasConceptScore W4311180314C555293320 @default.
- W4311180314 hasConceptScore W4311180314C60644358 @default.
- W4311180314 hasConceptScore W4311180314C71924100 @default.
- W4311180314 hasConceptScore W4311180314C86803240 @default.
- W4311180314 hasFunder F4320332161 @default.
- W4311180314 hasFunder F4320337357 @default.