Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311184443> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4311184443 endingPage "307" @default.
- W4311184443 startingPage "295" @default.
- W4311184443 abstract "The stock market is a sector that is very tempting to various kinds of people, and almost every alternate households invest their money to get better returns. Data plays a vital role in these predictions, and new tools like machine learning techniques provide additional support, which gives a range of data for forecasting values. Nowadays, different models are available to predict the outcomes of the stock market. In this paper, two models are used and analysed for predicting the stocks: regression and FB prophet. We have used a dataset of Infosys stock for over five years, and with this data, forecasting is done in the upcoming months. We have referred to various models for their working and outcomes and have chosen regression and FB prophet models for predicting stock prices and analysing their effectiveness using error % and Mean Absolute Percentage Error (MAPE) analysis. Thus, the outcomes show us that FB prophet is more accurate than the regression model in which the regression shows the error of about 14–16%, and in Fb prophet, the values were about 3–6%." @default.
- W4311184443 created "2022-12-24" @default.
- W4311184443 creator A5037240691 @default.
- W4311184443 creator A5071569933 @default.
- W4311184443 creator A5076980266 @default.
- W4311184443 creator A5090661837 @default.
- W4311184443 date "2022-12-03" @default.
- W4311184443 modified "2023-09-27" @default.
- W4311184443 title "Comparative Analysis of Stock Prices by Regression Analysis and FB Prophet Models" @default.
- W4311184443 cites W1987379632 @default.
- W4311184443 cites W2059615508 @default.
- W4311184443 cites W2068860926 @default.
- W4311184443 cites W2096858484 @default.
- W4311184443 cites W2097486709 @default.
- W4311184443 cites W2140490477 @default.
- W4311184443 cites W2559264616 @default.
- W4311184443 cites W2977178908 @default.
- W4311184443 cites W2979880198 @default.
- W4311184443 cites W3000777965 @default.
- W4311184443 cites W3011667374 @default.
- W4311184443 cites W3113192514 @default.
- W4311184443 cites W3133869152 @default.
- W4311184443 cites W3199492356 @default.
- W4311184443 cites W4206828303 @default.
- W4311184443 cites W4245313553 @default.
- W4311184443 doi "https://doi.org/10.1007/978-981-19-6004-8_24" @default.
- W4311184443 hasPublicationYear "2022" @default.
- W4311184443 type Work @default.
- W4311184443 citedByCount "0" @default.
- W4311184443 crossrefType "book-chapter" @default.
- W4311184443 hasAuthorship W4311184443A5037240691 @default.
- W4311184443 hasAuthorship W4311184443A5071569933 @default.
- W4311184443 hasAuthorship W4311184443A5076980266 @default.
- W4311184443 hasAuthorship W4311184443A5090661837 @default.
- W4311184443 hasConcept C105795698 @default.
- W4311184443 hasConcept C127413603 @default.
- W4311184443 hasConcept C139945424 @default.
- W4311184443 hasConcept C149782125 @default.
- W4311184443 hasConcept C150217764 @default.
- W4311184443 hasConcept C152877465 @default.
- W4311184443 hasConcept C162324750 @default.
- W4311184443 hasConcept C166957645 @default.
- W4311184443 hasConcept C204036174 @default.
- W4311184443 hasConcept C205649164 @default.
- W4311184443 hasConcept C2779343474 @default.
- W4311184443 hasConcept C2780299701 @default.
- W4311184443 hasConcept C33923547 @default.
- W4311184443 hasConcept C78519656 @default.
- W4311184443 hasConcept C83546350 @default.
- W4311184443 hasConceptScore W4311184443C105795698 @default.
- W4311184443 hasConceptScore W4311184443C127413603 @default.
- W4311184443 hasConceptScore W4311184443C139945424 @default.
- W4311184443 hasConceptScore W4311184443C149782125 @default.
- W4311184443 hasConceptScore W4311184443C150217764 @default.
- W4311184443 hasConceptScore W4311184443C152877465 @default.
- W4311184443 hasConceptScore W4311184443C162324750 @default.
- W4311184443 hasConceptScore W4311184443C166957645 @default.
- W4311184443 hasConceptScore W4311184443C204036174 @default.
- W4311184443 hasConceptScore W4311184443C205649164 @default.
- W4311184443 hasConceptScore W4311184443C2779343474 @default.
- W4311184443 hasConceptScore W4311184443C2780299701 @default.
- W4311184443 hasConceptScore W4311184443C33923547 @default.
- W4311184443 hasConceptScore W4311184443C78519656 @default.
- W4311184443 hasConceptScore W4311184443C83546350 @default.
- W4311184443 hasLocation W43111844431 @default.
- W4311184443 hasOpenAccess W4311184443 @default.
- W4311184443 hasPrimaryLocation W43111844431 @default.
- W4311184443 hasRelatedWork W1963569934 @default.
- W4311184443 hasRelatedWork W1963833426 @default.
- W4311184443 hasRelatedWork W2059921867 @default.
- W4311184443 hasRelatedWork W2080727847 @default.
- W4311184443 hasRelatedWork W2119696881 @default.
- W4311184443 hasRelatedWork W2245694845 @default.
- W4311184443 hasRelatedWork W2616061094 @default.
- W4311184443 hasRelatedWork W3021457118 @default.
- W4311184443 hasRelatedWork W3122972538 @default.
- W4311184443 hasRelatedWork W4311184443 @default.
- W4311184443 isParatext "false" @default.
- W4311184443 isRetracted "false" @default.
- W4311184443 workType "book-chapter" @default.