Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311184466> ?p ?o ?g. }
- W4311184466 endingPage "560" @default.
- W4311184466 startingPage "545" @default.
- W4311184466 abstract "Gestational period is a significant factor in determining the well-being and survival of the infant. An abnormal gestational period has adverse effects on the mother and fetus, which might even lead to mortality. Machine learning offers the solution by analyzing the maternal and fetal attributes and predicting the number of gestational days ahead of time. In this study, we develop various machine learning models, to determine the gestational days by analyzing the maternal height, weight, age, and smoking status. Linear regression, ridge regression, robust regression, lasso regression, elastic net regression, polynomial regression, stochastic gradient descent, random forest regressor, SVM regressor, and ANN models were utilized. The models were evaluated based on the statistical parameters, such as MAE, RMSE, R2 score, and explained variance score. The results reveal that the linear regression model outperformed the others by achieving a minimal MAE and RMSE scores of 8.658248 and 11.801136, respectively, and a higher R2 value of 0.010901 and explained variance score of 0.021675." @default.
- W4311184466 created "2022-12-24" @default.
- W4311184466 creator A5026266868 @default.
- W4311184466 creator A5055154630 @default.
- W4311184466 creator A5063584244 @default.
- W4311184466 creator A5077885294 @default.
- W4311184466 date "2022-12-03" @default.
- W4311184466 modified "2023-09-27" @default.
- W4311184466 title "Predicting the Gestational Period Using Machine Learning Algorithms" @default.
- W4311184466 cites W1527120121 @default.
- W4311184466 cites W1968871203 @default.
- W4311184466 cites W1976233400 @default.
- W4311184466 cites W2006760882 @default.
- W4311184466 cites W2050576899 @default.
- W4311184466 cites W2071148927 @default.
- W4311184466 cites W2095400702 @default.
- W4311184466 cites W2128414219 @default.
- W4311184466 cites W2156113305 @default.
- W4311184466 cites W2166758810 @default.
- W4311184466 cites W2258341485 @default.
- W4311184466 cites W2399980280 @default.
- W4311184466 cites W2607258894 @default.
- W4311184466 cites W2620528022 @default.
- W4311184466 cites W2621167831 @default.
- W4311184466 cites W2790764456 @default.
- W4311184466 cites W2806690659 @default.
- W4311184466 cites W2808572612 @default.
- W4311184466 cites W2885070421 @default.
- W4311184466 cites W2904806604 @default.
- W4311184466 cites W2911823285 @default.
- W4311184466 cites W2940717133 @default.
- W4311184466 cites W2959669256 @default.
- W4311184466 cites W2998337476 @default.
- W4311184466 cites W3015508855 @default.
- W4311184466 cites W3068224629 @default.
- W4311184466 cites W3091251981 @default.
- W4311184466 cites W3092914169 @default.
- W4311184466 cites W3123430733 @default.
- W4311184466 cites W4224988709 @default.
- W4311184466 doi "https://doi.org/10.1007/978-981-19-6004-8_44" @default.
- W4311184466 hasPublicationYear "2022" @default.
- W4311184466 type Work @default.
- W4311184466 citedByCount "0" @default.
- W4311184466 crossrefType "book-chapter" @default.
- W4311184466 hasAuthorship W4311184466A5026266868 @default.
- W4311184466 hasAuthorship W4311184466A5055154630 @default.
- W4311184466 hasAuthorship W4311184466A5063584244 @default.
- W4311184466 hasAuthorship W4311184466A5077885294 @default.
- W4311184466 hasConcept C105795698 @default.
- W4311184466 hasConcept C119857082 @default.
- W4311184466 hasConcept C120068334 @default.
- W4311184466 hasConcept C121955636 @default.
- W4311184466 hasConcept C12267149 @default.
- W4311184466 hasConcept C136764020 @default.
- W4311184466 hasConcept C139945424 @default.
- W4311184466 hasConcept C144133560 @default.
- W4311184466 hasConcept C152877465 @default.
- W4311184466 hasConcept C154945302 @default.
- W4311184466 hasConcept C169258074 @default.
- W4311184466 hasConcept C196083921 @default.
- W4311184466 hasConcept C203868755 @default.
- W4311184466 hasConcept C2778376644 @default.
- W4311184466 hasConcept C2779234561 @default.
- W4311184466 hasConcept C33923547 @default.
- W4311184466 hasConcept C37616216 @default.
- W4311184466 hasConcept C41008148 @default.
- W4311184466 hasConcept C48921125 @default.
- W4311184466 hasConcept C54355233 @default.
- W4311184466 hasConcept C83546350 @default.
- W4311184466 hasConcept C86803240 @default.
- W4311184466 hasConceptScore W4311184466C105795698 @default.
- W4311184466 hasConceptScore W4311184466C119857082 @default.
- W4311184466 hasConceptScore W4311184466C120068334 @default.
- W4311184466 hasConceptScore W4311184466C121955636 @default.
- W4311184466 hasConceptScore W4311184466C12267149 @default.
- W4311184466 hasConceptScore W4311184466C136764020 @default.
- W4311184466 hasConceptScore W4311184466C139945424 @default.
- W4311184466 hasConceptScore W4311184466C144133560 @default.
- W4311184466 hasConceptScore W4311184466C152877465 @default.
- W4311184466 hasConceptScore W4311184466C154945302 @default.
- W4311184466 hasConceptScore W4311184466C169258074 @default.
- W4311184466 hasConceptScore W4311184466C196083921 @default.
- W4311184466 hasConceptScore W4311184466C203868755 @default.
- W4311184466 hasConceptScore W4311184466C2778376644 @default.
- W4311184466 hasConceptScore W4311184466C2779234561 @default.
- W4311184466 hasConceptScore W4311184466C33923547 @default.
- W4311184466 hasConceptScore W4311184466C37616216 @default.
- W4311184466 hasConceptScore W4311184466C41008148 @default.
- W4311184466 hasConceptScore W4311184466C48921125 @default.
- W4311184466 hasConceptScore W4311184466C54355233 @default.
- W4311184466 hasConceptScore W4311184466C83546350 @default.
- W4311184466 hasConceptScore W4311184466C86803240 @default.
- W4311184466 hasLocation W43111844661 @default.
- W4311184466 hasOpenAccess W4311184466 @default.
- W4311184466 hasPrimaryLocation W43111844661 @default.
- W4311184466 hasRelatedWork W2729932615 @default.
- W4311184466 hasRelatedWork W2756088584 @default.
- W4311184466 hasRelatedWork W2966251753 @default.