Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311184467> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4311184467 endingPage "64" @default.
- W4311184467 startingPage "53" @default.
- W4311184467 abstract "Since the Internet is anonymous and uncontrolled, it is more open to phishing attacks, which can trick users to view malicious content in exchange for their personal information. However, the number of victims to this digital attack is significantly increasing due to inadequate security mechanisms. This research study develops a cyberbullying detection system, which can produce features from Twitter text by incorporating a point-wise mutual information approach. Further, a supervised machine learning method is developed for detecting the cyberbullying scenarios. Moreover, the proposed study has employed the sentiment, lexicon, and embedding features along with the PMI-semantic orientation. To apply extracted features, the SVM, Naive Bayes, KNN, decision tree, and random forest algorithm were employed. Experiments employing the proposed framework in a multi-class and binary setting indicate considerable potential in terms of kappa values, increased accuracy, and computed f-values. These findings imply that the proposed framework is a suitable option for recognizing the cyberbullying behavior in online social networks. Finally, the proposed outcomes and baseline features are compared by using various machine learning algorithms. The tenfold cross-validation has generated a highest accuracy of about 90.36%, and all four experiments assessed random forest algorithm based on 80% of the training dataset. The test result has also computed higher accuracy on random forest algorithm based on 20% of the test dataset." @default.
- W4311184467 created "2022-12-24" @default.
- W4311184467 creator A5018439678 @default.
- W4311184467 creator A5061326157 @default.
- W4311184467 creator A5063771808 @default.
- W4311184467 creator A5067288410 @default.
- W4311184467 date "2022-12-03" @default.
- W4311184467 modified "2023-10-01" @default.
- W4311184467 title "Analysis of Phishing Base Problems Using Random Forest Features Selection Techniques and Machine Learning Classifiers" @default.
- W4311184467 cites W1147066959 @default.
- W4311184467 cites W1990188874 @default.
- W4311184467 cites W1993155576 @default.
- W4311184467 cites W2013280855 @default.
- W4311184467 cites W2163764145 @default.
- W4311184467 cites W2418966180 @default.
- W4311184467 cites W2565147608 @default.
- W4311184467 cites W2604064158 @default.
- W4311184467 cites W2624682701 @default.
- W4311184467 cites W2770321693 @default.
- W4311184467 cites W2782865993 @default.
- W4311184467 cites W2799581224 @default.
- W4311184467 cites W2802855132 @default.
- W4311184467 cites W2890718808 @default.
- W4311184467 cites W2916922030 @default.
- W4311184467 cites W2967877466 @default.
- W4311184467 cites W2979715612 @default.
- W4311184467 cites W2996625456 @default.
- W4311184467 cites W2999300566 @default.
- W4311184467 cites W3006446816 @default.
- W4311184467 cites W3012459057 @default.
- W4311184467 cites W3013498854 @default.
- W4311184467 cites W3033830493 @default.
- W4311184467 cites W3039467114 @default.
- W4311184467 cites W3085804088 @default.
- W4311184467 cites W3094199944 @default.
- W4311184467 cites W3118827657 @default.
- W4311184467 cites W3123481128 @default.
- W4311184467 cites W3135282021 @default.
- W4311184467 cites W3148181069 @default.
- W4311184467 cites W3158304349 @default.
- W4311184467 cites W3203006292 @default.
- W4311184467 cites W3204314089 @default.
- W4311184467 doi "https://doi.org/10.1007/978-981-19-6004-8_5" @default.
- W4311184467 hasPublicationYear "2022" @default.
- W4311184467 type Work @default.
- W4311184467 citedByCount "0" @default.
- W4311184467 crossrefType "book-chapter" @default.
- W4311184467 hasAuthorship W4311184467A5018439678 @default.
- W4311184467 hasAuthorship W4311184467A5061326157 @default.
- W4311184467 hasAuthorship W4311184467A5063771808 @default.
- W4311184467 hasAuthorship W4311184467A5067288410 @default.
- W4311184467 hasConcept C110875604 @default.
- W4311184467 hasConcept C119857082 @default.
- W4311184467 hasConcept C12267149 @default.
- W4311184467 hasConcept C124101348 @default.
- W4311184467 hasConcept C136764020 @default.
- W4311184467 hasConcept C148483581 @default.
- W4311184467 hasConcept C154945302 @default.
- W4311184467 hasConcept C169258074 @default.
- W4311184467 hasConcept C41008148 @default.
- W4311184467 hasConcept C52001869 @default.
- W4311184467 hasConcept C83860907 @default.
- W4311184467 hasConcept C84525736 @default.
- W4311184467 hasConceptScore W4311184467C110875604 @default.
- W4311184467 hasConceptScore W4311184467C119857082 @default.
- W4311184467 hasConceptScore W4311184467C12267149 @default.
- W4311184467 hasConceptScore W4311184467C124101348 @default.
- W4311184467 hasConceptScore W4311184467C136764020 @default.
- W4311184467 hasConceptScore W4311184467C148483581 @default.
- W4311184467 hasConceptScore W4311184467C154945302 @default.
- W4311184467 hasConceptScore W4311184467C169258074 @default.
- W4311184467 hasConceptScore W4311184467C41008148 @default.
- W4311184467 hasConceptScore W4311184467C52001869 @default.
- W4311184467 hasConceptScore W4311184467C83860907 @default.
- W4311184467 hasConceptScore W4311184467C84525736 @default.
- W4311184467 hasLocation W43111844671 @default.
- W4311184467 hasOpenAccess W4311184467 @default.
- W4311184467 hasPrimaryLocation W43111844671 @default.
- W4311184467 hasRelatedWork W2783049111 @default.
- W4311184467 hasRelatedWork W2985924212 @default.
- W4311184467 hasRelatedWork W3127425528 @default.
- W4311184467 hasRelatedWork W3143658565 @default.
- W4311184467 hasRelatedWork W3204641204 @default.
- W4311184467 hasRelatedWork W4210381061 @default.
- W4311184467 hasRelatedWork W4214850595 @default.
- W4311184467 hasRelatedWork W4292651891 @default.
- W4311184467 hasRelatedWork W4293525103 @default.
- W4311184467 hasRelatedWork W4377964522 @default.
- W4311184467 isParatext "false" @default.
- W4311184467 isRetracted "false" @default.
- W4311184467 workType "book-chapter" @default.