Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311184470> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4311184470 abstract "Abstract In this study, the prediction of pine mistletoe distribution in Scots pine ecosystems was explored using remote sensing variables to compare the multilayer perceptron (MLP) artificial neural network (ANN) and logistic regression (LR) model performances. For this purpose, 109 sample plots were distinguished in pure Scots pine forests (natural) in the Eastern Black Sea Region of Turkey. Distinguishing mistletoe‐infected stands (69) and uninfected stands (40) was performed with field observations. The variables acquired from Landsat 8 (Level 1) images were used as independent variables for independent‐sample t ‐test, MLP ANN and LR models. Remote sensing variables indicated that mistletoe‐infected stands were in drier areas with a lower vegetation‐leaf area index. Based on the performance results of both models, the sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV) and accuracy of the MLP ANN model were superior to those of the LR model. The prediction percentages (SEN, SPE, PPV and NPV) of mistletoe‐infected stands were better than the prediction percentages of uninfected stands. The prediction accuracies of LR and MLP ANN models were 74.3% and 89.6%, respectively. However, all remote sensing variables were included in the prediction equation of the MLP ANN model, while the thermal infrared 1 (TIRS1) variable was included in the LR model. In the MLP ANN model, the TIRS1 variable also had the highest normalized importance (100%). The area under the curve (AUC) value for identifying the mistletoe‐infected stands of Scots pine forests used by the MLP ANN model (0.892 ± 0.034) was higher than in the LR model (0.838 ± 0.039), explaining the more accurate predictions obtained from the MLP ANN model. The MLP ANN model showed much better performance than the LR model. The results of this study are expected to make important contributions to the identification of potential mistletoe‐infected areas." @default.
- W4311184470 created "2022-12-24" @default.
- W4311184470 creator A5012491267 @default.
- W4311184470 creator A5018576079 @default.
- W4311184470 date "2022-12-02" @default.
- W4311184470 modified "2023-09-26" @default.
- W4311184470 title "Prediction of pine mistletoe infection using remote sensing imaging: A comparison of the artificial neural network model and logistic regression model" @default.
- W4311184470 cites W1665465313 @default.
- W4311184470 cites W179057239 @default.
- W4311184470 cites W1964033287 @default.
- W4311184470 cites W1974110440 @default.
- W4311184470 cites W1985215718 @default.
- W4311184470 cites W1999344577 @default.
- W4311184470 cites W2037911084 @default.
- W4311184470 cites W2056522226 @default.
- W4311184470 cites W2059523177 @default.
- W4311184470 cites W2077509829 @default.
- W4311184470 cites W2100493915 @default.
- W4311184470 cites W2100844912 @default.
- W4311184470 cites W2103672633 @default.
- W4311184470 cites W2110834480 @default.
- W4311184470 cites W2118302299 @default.
- W4311184470 cites W2120155707 @default.
- W4311184470 cites W2148574664 @default.
- W4311184470 cites W2163767811 @default.
- W4311184470 cites W2189875247 @default.
- W4311184470 cites W2216326501 @default.
- W4311184470 cites W2338632158 @default.
- W4311184470 cites W2463290221 @default.
- W4311184470 cites W2558973205 @default.
- W4311184470 cites W2560901046 @default.
- W4311184470 cites W2597479177 @default.
- W4311184470 cites W2952045193 @default.
- W4311184470 cites W2973710071 @default.
- W4311184470 cites W3007630497 @default.
- W4311184470 cites W3194079918 @default.
- W4311184470 doi "https://doi.org/10.1111/efp.12783" @default.
- W4311184470 hasPublicationYear "2022" @default.
- W4311184470 type Work @default.
- W4311184470 citedByCount "0" @default.
- W4311184470 crossrefType "journal-article" @default.
- W4311184470 hasAuthorship W4311184470A5012491267 @default.
- W4311184470 hasAuthorship W4311184470A5018576079 @default.
- W4311184470 hasConcept C105795698 @default.
- W4311184470 hasConcept C151956035 @default.
- W4311184470 hasConcept C152877465 @default.
- W4311184470 hasConcept C154945302 @default.
- W4311184470 hasConcept C179717631 @default.
- W4311184470 hasConcept C205649164 @default.
- W4311184470 hasConcept C27574286 @default.
- W4311184470 hasConcept C2779128174 @default.
- W4311184470 hasConcept C2910048773 @default.
- W4311184470 hasConcept C33923547 @default.
- W4311184470 hasConcept C41008148 @default.
- W4311184470 hasConcept C45804977 @default.
- W4311184470 hasConcept C48921125 @default.
- W4311184470 hasConcept C50644808 @default.
- W4311184470 hasConcept C59822182 @default.
- W4311184470 hasConcept C86803240 @default.
- W4311184470 hasConcept C97137747 @default.
- W4311184470 hasConceptScore W4311184470C105795698 @default.
- W4311184470 hasConceptScore W4311184470C151956035 @default.
- W4311184470 hasConceptScore W4311184470C152877465 @default.
- W4311184470 hasConceptScore W4311184470C154945302 @default.
- W4311184470 hasConceptScore W4311184470C179717631 @default.
- W4311184470 hasConceptScore W4311184470C205649164 @default.
- W4311184470 hasConceptScore W4311184470C27574286 @default.
- W4311184470 hasConceptScore W4311184470C2779128174 @default.
- W4311184470 hasConceptScore W4311184470C2910048773 @default.
- W4311184470 hasConceptScore W4311184470C33923547 @default.
- W4311184470 hasConceptScore W4311184470C41008148 @default.
- W4311184470 hasConceptScore W4311184470C45804977 @default.
- W4311184470 hasConceptScore W4311184470C48921125 @default.
- W4311184470 hasConceptScore W4311184470C50644808 @default.
- W4311184470 hasConceptScore W4311184470C59822182 @default.
- W4311184470 hasConceptScore W4311184470C86803240 @default.
- W4311184470 hasConceptScore W4311184470C97137747 @default.
- W4311184470 hasIssue "1" @default.
- W4311184470 hasLocation W43111844701 @default.
- W4311184470 hasOpenAccess W4311184470 @default.
- W4311184470 hasPrimaryLocation W43111844701 @default.
- W4311184470 hasRelatedWork W1521768418 @default.
- W4311184470 hasRelatedWork W2048754675 @default.
- W4311184470 hasRelatedWork W2051065325 @default.
- W4311184470 hasRelatedWork W2063767105 @default.
- W4311184470 hasRelatedWork W2075210509 @default.
- W4311184470 hasRelatedWork W2352101619 @default.
- W4311184470 hasRelatedWork W2979774498 @default.
- W4311184470 hasRelatedWork W2980277513 @default.
- W4311184470 hasRelatedWork W4312463433 @default.
- W4311184470 hasRelatedWork W575198667 @default.
- W4311184470 hasVolume "53" @default.
- W4311184470 isParatext "false" @default.
- W4311184470 isRetracted "false" @default.
- W4311184470 workType "article" @default.