Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311185635> ?p ?o ?g. }
- W4311185635 endingPage "430" @default.
- W4311185635 startingPage "430" @default.
- W4311185635 abstract "Models for predicting acute myocardial infarction (AMI) at the prehospital stage were developed and their efficacy compared, based on variables identified from a nationwide systematic emergency medical service (EMS) registry using conventional statistical methods and machine learning algorithms. Patients in the EMS cardiovascular registry aged >15 years who were transferred from the public EMS to emergency departments in Korea from January 2016 to December 2018 were enrolled. Two datasets were constructed according to the hierarchical structure of the registry. A total of 184,577 patients (Dataset 1) were included in the final analysis. Among them, 72,439 patients (Dataset 2) were suspected to have AMI at prehospital stage. Between the models derived using the conventional logistic regression method, the B-type model incorporated AMI-specific variables from the A-type model and exhibited a superior discriminative ability (p = 0.02). The models that used extreme gradient boosting and a multilayer perceptron yielded a higher predictive performance than the conventional logistic regression-based models for analyses that used both datasets. Each machine learning algorithm yielded different classification lists of the 10 most important features. Therefore, prediction models that use nationwide prehospital data and are developed with appropriate structures can improve the identification of patients who require timely AMI management." @default.
- W4311185635 created "2022-12-24" @default.
- W4311185635 creator A5015627818 @default.
- W4311185635 creator A5017123962 @default.
- W4311185635 creator A5037780092 @default.
- W4311185635 creator A5042383723 @default.
- W4311185635 creator A5062627428 @default.
- W4311185635 creator A5071171073 @default.
- W4311185635 creator A5080433925 @default.
- W4311185635 creator A5083433064 @default.
- W4311185635 creator A5089959394 @default.
- W4311185635 date "2022-12-02" @default.
- W4311185635 modified "2023-10-01" @default.
- W4311185635 title "Development of Prediction Models for Acute Myocardial Infarction at Prehospital Stage with Machine Learning Based on a Nationwide Database" @default.
- W4311185635 cites W2015185375 @default.
- W4311185635 cites W2021155520 @default.
- W4311185635 cites W2028652953 @default.
- W4311185635 cites W2059904497 @default.
- W4311185635 cites W2096391232 @default.
- W4311185635 cites W2097950056 @default.
- W4311185635 cites W2102271857 @default.
- W4311185635 cites W2115179276 @default.
- W4311185635 cites W2148946317 @default.
- W4311185635 cites W2153333326 @default.
- W4311185635 cites W2162875449 @default.
- W4311185635 cites W2174161146 @default.
- W4311185635 cites W2328176404 @default.
- W4311185635 cites W2399307781 @default.
- W4311185635 cites W2496911238 @default.
- W4311185635 cites W2510201217 @default.
- W4311185635 cites W2522870392 @default.
- W4311185635 cites W2543629952 @default.
- W4311185635 cites W2772248379 @default.
- W4311185635 cites W2784312892 @default.
- W4311185635 cites W2807126276 @default.
- W4311185635 cites W2811095531 @default.
- W4311185635 cites W2888833916 @default.
- W4311185635 cites W2889493126 @default.
- W4311185635 cites W2902834916 @default.
- W4311185635 cites W2927351257 @default.
- W4311185635 cites W2937030683 @default.
- W4311185635 cites W2974689574 @default.
- W4311185635 cites W2982374880 @default.
- W4311185635 cites W3006176871 @default.
- W4311185635 cites W3048030988 @default.
- W4311185635 cites W4235711314 @default.
- W4311185635 doi "https://doi.org/10.3390/jcdd9120430" @default.
- W4311185635 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36547427" @default.
- W4311185635 hasPublicationYear "2022" @default.
- W4311185635 type Work @default.
- W4311185635 citedByCount "3" @default.
- W4311185635 countsByYear W43111856352023 @default.
- W4311185635 crossrefType "journal-article" @default.
- W4311185635 hasAuthorship W4311185635A5015627818 @default.
- W4311185635 hasAuthorship W4311185635A5017123962 @default.
- W4311185635 hasAuthorship W4311185635A5037780092 @default.
- W4311185635 hasAuthorship W4311185635A5042383723 @default.
- W4311185635 hasAuthorship W4311185635A5062627428 @default.
- W4311185635 hasAuthorship W4311185635A5071171073 @default.
- W4311185635 hasAuthorship W4311185635A5080433925 @default.
- W4311185635 hasAuthorship W4311185635A5083433064 @default.
- W4311185635 hasAuthorship W4311185635A5089959394 @default.
- W4311185635 hasBestOaLocation W43111856351 @default.
- W4311185635 hasConcept C119857082 @default.
- W4311185635 hasConcept C126322002 @default.
- W4311185635 hasConcept C151956035 @default.
- W4311185635 hasConcept C154945302 @default.
- W4311185635 hasConcept C169258074 @default.
- W4311185635 hasConcept C179717631 @default.
- W4311185635 hasConcept C194828623 @default.
- W4311185635 hasConcept C41008148 @default.
- W4311185635 hasConcept C45804977 @default.
- W4311185635 hasConcept C500558357 @default.
- W4311185635 hasConcept C50644808 @default.
- W4311185635 hasConcept C545542383 @default.
- W4311185635 hasConcept C70153297 @default.
- W4311185635 hasConcept C71924100 @default.
- W4311185635 hasConcept C97931131 @default.
- W4311185635 hasConceptScore W4311185635C119857082 @default.
- W4311185635 hasConceptScore W4311185635C126322002 @default.
- W4311185635 hasConceptScore W4311185635C151956035 @default.
- W4311185635 hasConceptScore W4311185635C154945302 @default.
- W4311185635 hasConceptScore W4311185635C169258074 @default.
- W4311185635 hasConceptScore W4311185635C179717631 @default.
- W4311185635 hasConceptScore W4311185635C194828623 @default.
- W4311185635 hasConceptScore W4311185635C41008148 @default.
- W4311185635 hasConceptScore W4311185635C45804977 @default.
- W4311185635 hasConceptScore W4311185635C500558357 @default.
- W4311185635 hasConceptScore W4311185635C50644808 @default.
- W4311185635 hasConceptScore W4311185635C545542383 @default.
- W4311185635 hasConceptScore W4311185635C70153297 @default.
- W4311185635 hasConceptScore W4311185635C71924100 @default.
- W4311185635 hasConceptScore W4311185635C97931131 @default.
- W4311185635 hasFunder F4320322030 @default.
- W4311185635 hasIssue "12" @default.
- W4311185635 hasLocation W43111856351 @default.
- W4311185635 hasLocation W43111856352 @default.
- W4311185635 hasLocation W43111856353 @default.