Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311187072> ?p ?o ?g. }
- W4311187072 endingPage "201" @default.
- W4311187072 startingPage "191" @default.
- W4311187072 abstract "Solid waste is a widespread problem that is having a negative effect on the global environment. Owing to the ability of macroscopic observation, it is reasonable to believe that remote sensing could be an effective way to realize the detection and monitoring of solid waste. Solid waste is usually a mixture of various materials, with a randomly scattered distribution, which brings great difficulty to precise detection. In this article, we propose a deep learning network for solid waste detection in urban areas, aiming to realize the fast and automatic extraction of solid waste from the complicated and large-scale urban background. A novel dataset for solid waste detection was constructed by collecting 3192 images from Google Earth (with a resolution from 0.13 to 0.52 m), and then a location-guided key point network with multiple enhancements (LKN-ME) is proposed to perform the urban solid waste detection task. The LKN-ME method uses corner pooling and central convolution to capture the key points of an object. The location guidance is realized through constraining the key point locations situated of the annotated bounding box of an object. Multiple enhancements, including data mosaicing, an attention enhancement, and path aggregation, are integrated to improve the detection accuracy. The results show that the LKN-ME method can achieve a state-of-the-art AR <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>100</sub> (the average recall computed over 100 detections per image) of 71.8% and an average precision of 44.0% for the DSWD dataset, outperforming the classic object detection methods in solving the solid waste detection problem." @default.
- W4311187072 created "2022-12-24" @default.
- W4311187072 creator A5005686237 @default.
- W4311187072 creator A5064776886 @default.
- W4311187072 creator A5068946518 @default.
- W4311187072 creator A5075294170 @default.
- W4311187072 creator A5079445353 @default.
- W4311187072 date "2023-01-01" @default.
- W4311187072 modified "2023-10-14" @default.
- W4311187072 title "Solid Waste Detection in Cities Using Remote Sensing Imagery Based on a Location-Guided Key Point Network With Multiple Enhancements" @default.
- W4311187072 cites W1536680647 @default.
- W4311187072 cites W1972582809 @default.
- W4311187072 cites W2005368619 @default.
- W4311187072 cites W2023706704 @default.
- W4311187072 cites W2031489346 @default.
- W4311187072 cites W2068542535 @default.
- W4311187072 cites W2100495367 @default.
- W4311187072 cites W2102605133 @default.
- W4311187072 cites W2119778524 @default.
- W4311187072 cites W2176924101 @default.
- W4311187072 cites W2307770531 @default.
- W4311187072 cites W2512351403 @default.
- W4311187072 cites W2570343428 @default.
- W4311187072 cites W2604086375 @default.
- W4311187072 cites W2615543373 @default.
- W4311187072 cites W2741487909 @default.
- W4311187072 cites W2782522152 @default.
- W4311187072 cites W2897042087 @default.
- W4311187072 cites W2942366787 @default.
- W4311187072 cites W2962749812 @default.
- W4311187072 cites W2963037989 @default.
- W4311187072 cites W2963150697 @default.
- W4311187072 cites W2964121718 @default.
- W4311187072 cites W2989604896 @default.
- W4311187072 cites W2992240579 @default.
- W4311187072 cites W3000627240 @default.
- W4311187072 cites W3004492228 @default.
- W4311187072 cites W3012573144 @default.
- W4311187072 cites W3039904171 @default.
- W4311187072 cites W3091945887 @default.
- W4311187072 cites W3113117952 @default.
- W4311187072 cites W3157130577 @default.
- W4311187072 cites W4213000285 @default.
- W4311187072 cites W4226214854 @default.
- W4311187072 cites W639708223 @default.
- W4311187072 doi "https://doi.org/10.1109/jstars.2022.3224555" @default.
- W4311187072 hasPublicationYear "2023" @default.
- W4311187072 type Work @default.
- W4311187072 citedByCount "0" @default.
- W4311187072 crossrefType "journal-article" @default.
- W4311187072 hasAuthorship W4311187072A5005686237 @default.
- W4311187072 hasAuthorship W4311187072A5064776886 @default.
- W4311187072 hasAuthorship W4311187072A5068946518 @default.
- W4311187072 hasAuthorship W4311187072A5075294170 @default.
- W4311187072 hasAuthorship W4311187072A5079445353 @default.
- W4311187072 hasBestOaLocation W43111870721 @default.
- W4311187072 hasConcept C127413603 @default.
- W4311187072 hasConcept C154945302 @default.
- W4311187072 hasConcept C205649164 @default.
- W4311187072 hasConcept C2524010 @default.
- W4311187072 hasConcept C26517878 @default.
- W4311187072 hasConcept C2776151529 @default.
- W4311187072 hasConcept C28719098 @default.
- W4311187072 hasConcept C33923547 @default.
- W4311187072 hasConcept C38652104 @default.
- W4311187072 hasConcept C41008148 @default.
- W4311187072 hasConcept C548081761 @default.
- W4311187072 hasConcept C62649853 @default.
- W4311187072 hasConcept C70437156 @default.
- W4311187072 hasConcept C75779659 @default.
- W4311187072 hasConcept C79403827 @default.
- W4311187072 hasConcept C89600930 @default.
- W4311187072 hasConceptScore W4311187072C127413603 @default.
- W4311187072 hasConceptScore W4311187072C154945302 @default.
- W4311187072 hasConceptScore W4311187072C205649164 @default.
- W4311187072 hasConceptScore W4311187072C2524010 @default.
- W4311187072 hasConceptScore W4311187072C26517878 @default.
- W4311187072 hasConceptScore W4311187072C2776151529 @default.
- W4311187072 hasConceptScore W4311187072C28719098 @default.
- W4311187072 hasConceptScore W4311187072C33923547 @default.
- W4311187072 hasConceptScore W4311187072C38652104 @default.
- W4311187072 hasConceptScore W4311187072C41008148 @default.
- W4311187072 hasConceptScore W4311187072C548081761 @default.
- W4311187072 hasConceptScore W4311187072C62649853 @default.
- W4311187072 hasConceptScore W4311187072C70437156 @default.
- W4311187072 hasConceptScore W4311187072C75779659 @default.
- W4311187072 hasConceptScore W4311187072C79403827 @default.
- W4311187072 hasConceptScore W4311187072C89600930 @default.
- W4311187072 hasFunder F4320321001 @default.
- W4311187072 hasLocation W43111870721 @default.
- W4311187072 hasLocation W43111870722 @default.
- W4311187072 hasOpenAccess W4311187072 @default.
- W4311187072 hasPrimaryLocation W43111870721 @default.
- W4311187072 hasRelatedWork W2112454231 @default.
- W4311187072 hasRelatedWork W2354005379 @default.
- W4311187072 hasRelatedWork W2507402573 @default.
- W4311187072 hasRelatedWork W2613186388 @default.
- W4311187072 hasRelatedWork W2734888972 @default.