Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311187310> ?p ?o ?g. }
- W4311187310 endingPage "17" @default.
- W4311187310 startingPage "1" @default.
- W4311187310 abstract "Grinding is one of the most complex and accurate machining processes, and the efficiency of the grinding wheel depends significantly on its surface properties. This work aims to propose an algorithmic manner that reduces the cost and time to conduct grinding of an optimized DIN 1.2080 tool steel (SPK) using a soft computing technique to obtain the best combination of input parameters including depth of cut (20, 40, 60 <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mi>μ</mi> <mi mathvariant=normal>m</mi> </math> ), wheel speed (15, 20, 25 <math xmlns=http://www.w3.org/1998/Math/MathML id=M2> <mi mathvariant=normal>m</mi> <mo>/</mo> <mi mathvariant=normal>s</mi> </math> ), feed rate (100, 300, 500 <math xmlns=http://www.w3.org/1998/Math/MathML id=M3> <mi mathvariant=normal>m</mi> <mi mathvariant=normal>m</mi> <mo>/</mo> <mi mathvariant=normal>s</mi> </math> ), and incidence angle (0, 30, 45 <math xmlns=http://www.w3.org/1998/Math/MathML id=M4> <mi mathvariant=normal>d</mi> <mi mathvariant=normal>e</mi> <mtext> </mtext> <mi mathvariant=normal>g</mi> <mi mathvariant=normal>r</mi> <mi mathvariant=normal>e</mi> <mi mathvariant=normal>e</mi> <mi mathvariant=normal>s</mi> </math> ) with respect to output parameters consisting of average surface roughness and specific grinding energy. According to the input parameters and their levels, an experiment using fractional factorial design of experiment (RFDOE) was designed. Later on, two parallel feed-forward backpropagation (FFBPNN) networks with similar topology made up of 4, 11, and 1 units in their input, hidden, and output layers are trained, respectively. After sensitivity analyses of networks for determination of the relative importance of input variables, a genetic algorithm (GA) adopting linear programming (LP) based on Euclidean distance is coupled to networks to seek out the best combinations of input parameters that result in minimum average surface roughness and minimum specific grinding energy. The findings revealed that RFDOE provides valid data for training FFBP networks with a total goodness value of more than 1.99 in both cases. The sensitivity analyses showed that feed rate (38.97%) and incidence angle (33.94%) contribute the most in the case of average surface roughness and specific grinding energy networks, respectively. Despite the similar surface quality based on scanning electron microscopy (SEM), the optimization resulted in an optimized condition of the depth of cut of 25.23 <math xmlns=http://www.w3.org/1998/Math/MathML id=M5> <mi>μ</mi> <mi mathvariant=normal>m</mi> </math> , wheel speed of 15.02 <math xmlns=http://www.w3.org/1998/Math/MathML id=M6> <mi mathvariant=normal>m</mi> <mi mathvariant=normal>m</mi> <mo>/</mo> <mi mathvariant=normal>s</mi> </math> , feed rate of 369.45 <math xmlns=http://www.w3.org/1998/Math/MathML id=M7> <mi mathvariant=normal>m</mi> <mi mathvariant=normal>m</mi> <mo>/</mo> <mi mathvariant=normal>s</mi> </math> , and incidence angle of 44.98 <math xmlns=http://www.w3.org/1998/Math/MathML id=M8> <mi mathvariant=normal>d</mi> <mi mathvariant=normal>e</mi> <mtext> </mtext> <mi mathvariant=normal>g</mi> <mi mathvariant=normal>r</mi> <mi mathvariant=normal>e</mi> <mi mathvariant=normal>e</mi> <mi mathvariant=normal>s</mi> </math> , which had a lower cost value (0.0146) than the optimum one (0.0953). Thus, this study highlights that RFDOE with a hybrid optimization using FFBP networks-GA/LP can effectively minimize both average surface roughness and specific grinding energy of SPK." @default.
- W4311187310 created "2022-12-24" @default.
- W4311187310 creator A5022550042 @default.
- W4311187310 creator A5047005820 @default.
- W4311187310 creator A5084584972 @default.
- W4311187310 creator A5089367885 @default.
- W4311187310 date "2022-12-12" @default.
- W4311187310 modified "2023-10-18" @default.
- W4311187310 title "Optimization of Grinding Parameters of Tool Steel by the Soft Computing Technique" @default.
- W4311187310 cites W1245151690 @default.
- W4311187310 cites W1495464107 @default.
- W4311187310 cites W1781370357 @default.
- W4311187310 cites W1966297531 @default.
- W4311187310 cites W1969677729 @default.
- W4311187310 cites W1972787840 @default.
- W4311187310 cites W1976138826 @default.
- W4311187310 cites W1977283448 @default.
- W4311187310 cites W1982964660 @default.
- W4311187310 cites W2005132697 @default.
- W4311187310 cites W2005585791 @default.
- W4311187310 cites W2019072134 @default.
- W4311187310 cites W2035322392 @default.
- W4311187310 cites W2038338100 @default.
- W4311187310 cites W2043202896 @default.
- W4311187310 cites W2063882551 @default.
- W4311187310 cites W2088347837 @default.
- W4311187310 cites W2093584482 @default.
- W4311187310 cites W2095596591 @default.
- W4311187310 cites W2162313013 @default.
- W4311187310 cites W2297920821 @default.
- W4311187310 cites W2479954349 @default.
- W4311187310 cites W2769694412 @default.
- W4311187310 cites W2792575360 @default.
- W4311187310 cites W2795160375 @default.
- W4311187310 cites W2802943441 @default.
- W4311187310 cites W2808419291 @default.
- W4311187310 cites W2890968881 @default.
- W4311187310 cites W2900268551 @default.
- W4311187310 cites W2901318277 @default.
- W4311187310 cites W2904759036 @default.
- W4311187310 cites W2907299079 @default.
- W4311187310 cites W2921732421 @default.
- W4311187310 cites W2943049119 @default.
- W4311187310 cites W2945137565 @default.
- W4311187310 cites W2964156458 @default.
- W4311187310 cites W2991105478 @default.
- W4311187310 cites W2992302336 @default.
- W4311187310 cites W3017031189 @default.
- W4311187310 cites W3044626360 @default.
- W4311187310 cites W3061758263 @default.
- W4311187310 cites W3114038052 @default.
- W4311187310 cites W3120800416 @default.
- W4311187310 cites W3135344910 @default.
- W4311187310 cites W3185239974 @default.
- W4311187310 cites W3192687434 @default.
- W4311187310 cites W3194887198 @default.
- W4311187310 cites W3201080107 @default.
- W4311187310 cites W4206321988 @default.
- W4311187310 cites W4206915487 @default.
- W4311187310 cites W4213274492 @default.
- W4311187310 cites W4250503569 @default.
- W4311187310 cites W4283766277 @default.
- W4311187310 cites W4309002433 @default.
- W4311187310 cites W4312631006 @default.
- W4311187310 doi "https://doi.org/10.1155/2022/3042131" @default.
- W4311187310 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36544858" @default.
- W4311187310 hasPublicationYear "2022" @default.
- W4311187310 type Work @default.
- W4311187310 citedByCount "4" @default.
- W4311187310 countsByYear W43111873102023 @default.
- W4311187310 crossrefType "journal-article" @default.
- W4311187310 hasAuthorship W4311187310A5022550042 @default.
- W4311187310 hasAuthorship W4311187310A5047005820 @default.
- W4311187310 hasAuthorship W4311187310A5084584972 @default.
- W4311187310 hasAuthorship W4311187310A5089367885 @default.
- W4311187310 hasBestOaLocation W43111873101 @default.
- W4311187310 hasConcept C11413529 @default.
- W4311187310 hasConcept C191897082 @default.
- W4311187310 hasConcept C192562407 @default.
- W4311187310 hasConcept C2777571299 @default.
- W4311187310 hasConcept C33923547 @default.
- W4311187310 hasConcept C523214423 @default.
- W4311187310 hasConceptScore W4311187310C11413529 @default.
- W4311187310 hasConceptScore W4311187310C191897082 @default.
- W4311187310 hasConceptScore W4311187310C192562407 @default.
- W4311187310 hasConceptScore W4311187310C2777571299 @default.
- W4311187310 hasConceptScore W4311187310C33923547 @default.
- W4311187310 hasConceptScore W4311187310C523214423 @default.
- W4311187310 hasLocation W43111873101 @default.
- W4311187310 hasLocation W43111873102 @default.
- W4311187310 hasLocation W43111873103 @default.
- W4311187310 hasLocation W43111873104 @default.
- W4311187310 hasOpenAccess W4311187310 @default.
- W4311187310 hasPrimaryLocation W43111873101 @default.
- W4311187310 hasRelatedWork W1536479437 @default.
- W4311187310 hasRelatedWork W1673386697 @default.
- W4311187310 hasRelatedWork W1977065998 @default.
- W4311187310 hasRelatedWork W2227219158 @default.