Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311188599> ?p ?o ?g. }
- W4311188599 endingPage "16" @default.
- W4311188599 startingPage "1" @default.
- W4311188599 abstract "Detection of the tie bars in concrete pavement has been a challenging task. To address the purpose, ground penetrating radar (GPR) was used to acquire a large amount of image data along the longitudinal construction joints of plain concrete pavement in the field. The GPR image data was filtered to construct the dataset, containing 2185 tie bar reflected waves in 670 GPR images. Then, the YOLO series models, as the deep learning algorithms applied in inspecting the tie bars from GPR images, were well trained with the GPR training and validation sets. The comprehensive detection accuracy of the YOLOv4 model outperforms the YOLOv3, YOLOv3-tiny, and YOLOv4-tiny models in the test set. The mAP@0.5 value of the YOLOv4 model can reach 99.74%. All the signatures of tie bars in the testing GPR images, no matter whether they are incomplete, compressed, blurry with missing signal, or strong background noise, can be correctly and completely anchored using the bounding box based on the YOLOv4 model. Meanwhile, the detection speed of the YOLOv4 model for GPR data video is 50.8 frames per second. Therefore, the YOLOv4 model is reliable for automatically detecting the tie bars from GPR data in real-time." @default.
- W4311188599 created "2022-12-24" @default.
- W4311188599 creator A5055336287 @default.
- W4311188599 creator A5060329767 @default.
- W4311188599 date "2022-12-12" @default.
- W4311188599 modified "2023-09-26" @default.
- W4311188599 title "Deep learning-based detection of tie bars in concrete pavement using ground penetrating radar" @default.
- W4311188599 cites W1861492603 @default.
- W4311188599 cites W1963858050 @default.
- W4311188599 cites W1982598481 @default.
- W4311188599 cites W1991005508 @default.
- W4311188599 cites W1999738916 @default.
- W4311188599 cites W2016731390 @default.
- W4311188599 cites W2031489346 @default.
- W4311188599 cites W2035533870 @default.
- W4311188599 cites W2045864244 @default.
- W4311188599 cites W2064675319 @default.
- W4311188599 cites W2086622461 @default.
- W4311188599 cites W2108598243 @default.
- W4311188599 cites W2109255472 @default.
- W4311188599 cites W2142063750 @default.
- W4311188599 cites W2155366684 @default.
- W4311188599 cites W2160795898 @default.
- W4311188599 cites W2172516388 @default.
- W4311188599 cites W2194775991 @default.
- W4311188599 cites W2518909974 @default.
- W4311188599 cites W2565639579 @default.
- W4311188599 cites W2570343428 @default.
- W4311188599 cites W2597464784 @default.
- W4311188599 cites W2790327408 @default.
- W4311188599 cites W2794163378 @default.
- W4311188599 cites W2800496239 @default.
- W4311188599 cites W2883511843 @default.
- W4311188599 cites W2955333808 @default.
- W4311188599 cites W2963037989 @default.
- W4311188599 cites W2963351448 @default.
- W4311188599 cites W2963857746 @default.
- W4311188599 cites W2964121718 @default.
- W4311188599 cites W2985221802 @default.
- W4311188599 cites W2992308087 @default.
- W4311188599 cites W2997747012 @default.
- W4311188599 cites W3007914968 @default.
- W4311188599 cites W3013875977 @default.
- W4311188599 cites W3015736093 @default.
- W4311188599 cites W3022886678 @default.
- W4311188599 cites W3035571503 @default.
- W4311188599 cites W3042011474 @default.
- W4311188599 cites W3046130646 @default.
- W4311188599 cites W3082449922 @default.
- W4311188599 cites W3087277009 @default.
- W4311188599 cites W3106250896 @default.
- W4311188599 cites W3106630912 @default.
- W4311188599 cites W3110025962 @default.
- W4311188599 cites W3117123720 @default.
- W4311188599 cites W3121869276 @default.
- W4311188599 cites W3129040539 @default.
- W4311188599 cites W3156371261 @default.
- W4311188599 cites W3164005296 @default.
- W4311188599 cites W3166337757 @default.
- W4311188599 cites W3180134609 @default.
- W4311188599 cites W3180765288 @default.
- W4311188599 cites W3184083252 @default.
- W4311188599 cites W3194919493 @default.
- W4311188599 cites W3203911595 @default.
- W4311188599 cites W3210379830 @default.
- W4311188599 cites W3215424225 @default.
- W4311188599 cites W4205716095 @default.
- W4311188599 cites W639708223 @default.
- W4311188599 doi "https://doi.org/10.1080/10298436.2022.2155648" @default.
- W4311188599 hasPublicationYear "2022" @default.
- W4311188599 type Work @default.
- W4311188599 citedByCount "0" @default.
- W4311188599 crossrefType "journal-article" @default.
- W4311188599 hasAuthorship W4311188599A5055336287 @default.
- W4311188599 hasAuthorship W4311188599A5060329767 @default.
- W4311188599 hasConcept C127313418 @default.
- W4311188599 hasConcept C153180895 @default.
- W4311188599 hasConcept C154945302 @default.
- W4311188599 hasConcept C41008148 @default.
- W4311188599 hasConcept C554190296 @default.
- W4311188599 hasConcept C62649853 @default.
- W4311188599 hasConcept C71813955 @default.
- W4311188599 hasConcept C76155785 @default.
- W4311188599 hasConceptScore W4311188599C127313418 @default.
- W4311188599 hasConceptScore W4311188599C153180895 @default.
- W4311188599 hasConceptScore W4311188599C154945302 @default.
- W4311188599 hasConceptScore W4311188599C41008148 @default.
- W4311188599 hasConceptScore W4311188599C554190296 @default.
- W4311188599 hasConceptScore W4311188599C62649853 @default.
- W4311188599 hasConceptScore W4311188599C71813955 @default.
- W4311188599 hasConceptScore W4311188599C76155785 @default.
- W4311188599 hasLocation W43111885991 @default.
- W4311188599 hasOpenAccess W4311188599 @default.
- W4311188599 hasPrimaryLocation W43111885991 @default.
- W4311188599 hasRelatedWork W1972504504 @default.
- W4311188599 hasRelatedWork W2116555895 @default.
- W4311188599 hasRelatedWork W2121456623 @default.
- W4311188599 hasRelatedWork W2143509088 @default.