Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311192737> ?p ?o ?g. }
- W4311192737 endingPage "18" @default.
- W4311192737 startingPage "1" @default.
- W4311192737 abstract "Stress is a universal emotion that every human experiences daily. Psychologists say stress may lead to heart attack, depression, hypertension, strokes, or even sudden death. Many technical explorations like stress detection through facial expression, speech, text, physical behaviors, etc., were explored, but no consensus has been reached on the best method. The advancement in biomedical engineering yielded a rapid development of electroencephalogram (EEG) signal analysis that has inspired the idea of a multimethod fusion approach for the first time which employs multiple techniques such as discrete wavelet transform (DWT) for de-noising, adaptive synthetic sampling (ADASYN) for class balancing, and affinity propagation (AP) as a stratified sampling model along with the artificial neural network (ANN) as the classifier model for human emotion classification. From the EEG recordings of the DEAP dataset, the artifacts are removed, the signal is decomposed using a DWT, and features are extracted and fused to form the feature vector. As the dataset is high-dimensional, feature selection is done and ADASYN is used to address the imbalance of classes resulting in large-scale data. The innovative idea of the proposed system is to perform sampling using affinity propagation as a stratified sampling-based clustering algorithm as it determines the number of representative samples automatically which makes it superior to the K-Means, K-Medoid, that requires the K-value. Those samples are used as inputs to various classification models, the comparison of the AP-ANN, AP-SVM, and AP-RF is done, and their most important five performance metrics such as accuracy, precision, recall, F1-score, and specificity were compared. From our experiment, the AP-ANN model provides better accuracy of 86.8% and greater precision of 85.7%, a higher F1 score of 84.9%, a recall rate of 84.1%, and a specificity value of 89.2% which altogether provides better results than the other existing algorithms." @default.
- W4311192737 created "2022-12-24" @default.
- W4311192737 creator A5026677658 @default.
- W4311192737 creator A5067385575 @default.
- W4311192737 date "2022-12-12" @default.
- W4311192737 modified "2023-10-18" @default.
- W4311192737 title "An Efficient AP-ANN-Based Multimethod Fusion Model to Detect Stress through EEG Signal Analysis" @default.
- W4311192737 cites W1829924905 @default.
- W4311192737 cites W1877153489 @default.
- W4311192737 cites W2002055708 @default.
- W4311192737 cites W2047845985 @default.
- W4311192737 cites W2065454702 @default.
- W4311192737 cites W2081895431 @default.
- W4311192737 cites W2102417399 @default.
- W4311192737 cites W2106006415 @default.
- W4311192737 cites W2122022287 @default.
- W4311192737 cites W2145302786 @default.
- W4311192737 cites W2156331665 @default.
- W4311192737 cites W2167304858 @default.
- W4311192737 cites W2168809771 @default.
- W4311192737 cites W2339318011 @default.
- W4311192737 cites W2342982450 @default.
- W4311192737 cites W2486806851 @default.
- W4311192737 cites W2520956626 @default.
- W4311192737 cites W2551332719 @default.
- W4311192737 cites W2552144562 @default.
- W4311192737 cites W2553862339 @default.
- W4311192737 cites W2555828126 @default.
- W4311192737 cites W2622585104 @default.
- W4311192737 cites W2760473359 @default.
- W4311192737 cites W2765666606 @default.
- W4311192737 cites W2883643760 @default.
- W4311192737 cites W2890125629 @default.
- W4311192737 cites W2904800847 @default.
- W4311192737 cites W2941146140 @default.
- W4311192737 cites W2950067894 @default.
- W4311192737 cites W2953214845 @default.
- W4311192737 cites W2991465589 @default.
- W4311192737 cites W3002019319 @default.
- W4311192737 cites W3005203897 @default.
- W4311192737 cites W3013348605 @default.
- W4311192737 cites W3023198205 @default.
- W4311192737 cites W3042750953 @default.
- W4311192737 cites W3044719221 @default.
- W4311192737 cites W3087595142 @default.
- W4311192737 cites W3114627553 @default.
- W4311192737 cites W3134227030 @default.
- W4311192737 cites W3171384179 @default.
- W4311192737 cites W3207876215 @default.
- W4311192737 cites W3216327941 @default.
- W4311192737 cites W4226413155 @default.
- W4311192737 doi "https://doi.org/10.1155/2022/7672297" @default.
- W4311192737 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36544857" @default.
- W4311192737 hasPublicationYear "2022" @default.
- W4311192737 type Work @default.
- W4311192737 citedByCount "0" @default.
- W4311192737 crossrefType "journal-article" @default.
- W4311192737 hasAuthorship W4311192737A5026677658 @default.
- W4311192737 hasAuthorship W4311192737A5067385575 @default.
- W4311192737 hasBestOaLocation W43111927371 @default.
- W4311192737 hasConcept C106131492 @default.
- W4311192737 hasConcept C118552586 @default.
- W4311192737 hasConcept C119857082 @default.
- W4311192737 hasConcept C12267149 @default.
- W4311192737 hasConcept C140779682 @default.
- W4311192737 hasConcept C148483581 @default.
- W4311192737 hasConcept C153180895 @default.
- W4311192737 hasConcept C154945302 @default.
- W4311192737 hasConcept C15744967 @default.
- W4311192737 hasConcept C196216189 @default.
- W4311192737 hasConcept C28490314 @default.
- W4311192737 hasConcept C31972630 @default.
- W4311192737 hasConcept C41008148 @default.
- W4311192737 hasConcept C46286280 @default.
- W4311192737 hasConcept C47432892 @default.
- W4311192737 hasConcept C50644808 @default.
- W4311192737 hasConcept C522805319 @default.
- W4311192737 hasConcept C73555534 @default.
- W4311192737 hasConcept C95623464 @default.
- W4311192737 hasConceptScore W4311192737C106131492 @default.
- W4311192737 hasConceptScore W4311192737C118552586 @default.
- W4311192737 hasConceptScore W4311192737C119857082 @default.
- W4311192737 hasConceptScore W4311192737C12267149 @default.
- W4311192737 hasConceptScore W4311192737C140779682 @default.
- W4311192737 hasConceptScore W4311192737C148483581 @default.
- W4311192737 hasConceptScore W4311192737C153180895 @default.
- W4311192737 hasConceptScore W4311192737C154945302 @default.
- W4311192737 hasConceptScore W4311192737C15744967 @default.
- W4311192737 hasConceptScore W4311192737C196216189 @default.
- W4311192737 hasConceptScore W4311192737C28490314 @default.
- W4311192737 hasConceptScore W4311192737C31972630 @default.
- W4311192737 hasConceptScore W4311192737C41008148 @default.
- W4311192737 hasConceptScore W4311192737C46286280 @default.
- W4311192737 hasConceptScore W4311192737C47432892 @default.
- W4311192737 hasConceptScore W4311192737C50644808 @default.
- W4311192737 hasConceptScore W4311192737C522805319 @default.
- W4311192737 hasConceptScore W4311192737C73555534 @default.
- W4311192737 hasConceptScore W4311192737C95623464 @default.