Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311192774> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4311192774 endingPage "12334" @default.
- W4311192774 startingPage "12334" @default.
- W4311192774 abstract "With the change in global climate and environment, the prevalence of extreme rainstorms and flood disasters has increased, causing serious economic and property losses. Therefore, accurate and rapid prediction of waterlogging has become an urgent problem to be solved. In this study, Jianye District in Nanjing City of China is taken as the study area. The time series data recorded by rainfall stations and ponding monitoring stations from January 2015 to August 2018 are used to build a ponding prediction model based on the long short-term memory (LSTM) neural network. MSE (mean square error), MAE (mean absolute error) and MSLE (mean squared logarithmic error) were used as loss functions to conduct and train the LSTM model, then three ponding prediction models were built, namely LSTM (mse), LSTM (mae) and LSTM (msle), and a multi-step model was used to predict the depth of ponding in the next 1 h. Using the measured ponding data to evaluate the model prediction results, we selected rmse (root mean squared error), mae, mape (mean absolute percentage error) and NSE (Nash–Sutcliffe efficiency coefficient) as the evaluation indicators. The results showed that LSTM (msle) was the best model among the three models, with evaluation indicators as follows: rmse 5.34, mae 3.45, mape 53.93% and NSE 0.35. At the same time, we found that LSTM (mae) has a better prediction effect than the LSTM (mse) and LSTM (msle) models when the ponding depth exceeds 30 mm." @default.
- W4311192774 created "2022-12-24" @default.
- W4311192774 creator A5019550030 @default.
- W4311192774 creator A5020817752 @default.
- W4311192774 creator A5020932593 @default.
- W4311192774 creator A5022391546 @default.
- W4311192774 creator A5067047877 @default.
- W4311192774 creator A5083868441 @default.
- W4311192774 date "2022-12-02" @default.
- W4311192774 modified "2023-10-14" @default.
- W4311192774 title "An Effective Rainfall–Ponding Multi-Step Prediction Model Based on LSTM for Urban Waterlogging Points" @default.
- W4311192774 cites W2082484980 @default.
- W4311192774 cites W2136922672 @default.
- W4311192774 cites W2769851728 @default.
- W4311192774 cites W2800819102 @default.
- W4311192774 cites W2804523998 @default.
- W4311192774 cites W2894615779 @default.
- W4311192774 cites W2898791292 @default.
- W4311192774 cites W2922950277 @default.
- W4311192774 cites W2928248204 @default.
- W4311192774 cites W2942855061 @default.
- W4311192774 cites W2979567825 @default.
- W4311192774 cites W3010537613 @default.
- W4311192774 cites W3036363354 @default.
- W4311192774 cites W3040947615 @default.
- W4311192774 cites W3048416601 @default.
- W4311192774 cites W3110015110 @default.
- W4311192774 cites W3156674487 @default.
- W4311192774 cites W3179251834 @default.
- W4311192774 cites W3185010272 @default.
- W4311192774 cites W3185838909 @default.
- W4311192774 cites W3202418591 @default.
- W4311192774 cites W3209682781 @default.
- W4311192774 cites W3211899663 @default.
- W4311192774 cites W4223904618 @default.
- W4311192774 cites W4226084050 @default.
- W4311192774 cites W4280614049 @default.
- W4311192774 cites W4281673375 @default.
- W4311192774 cites W4281761698 @default.
- W4311192774 doi "https://doi.org/10.3390/app122312334" @default.
- W4311192774 hasPublicationYear "2022" @default.
- W4311192774 type Work @default.
- W4311192774 citedByCount "4" @default.
- W4311192774 countsByYear W43111927742023 @default.
- W4311192774 crossrefType "journal-article" @default.
- W4311192774 hasAuthorship W4311192774A5019550030 @default.
- W4311192774 hasAuthorship W4311192774A5020817752 @default.
- W4311192774 hasAuthorship W4311192774A5020932593 @default.
- W4311192774 hasAuthorship W4311192774A5022391546 @default.
- W4311192774 hasAuthorship W4311192774A5067047877 @default.
- W4311192774 hasAuthorship W4311192774A5083868441 @default.
- W4311192774 hasBestOaLocation W43111927741 @default.
- W4311192774 hasConcept C105795698 @default.
- W4311192774 hasConcept C120934525 @default.
- W4311192774 hasConcept C128990827 @default.
- W4311192774 hasConcept C139945424 @default.
- W4311192774 hasConcept C150217764 @default.
- W4311192774 hasConcept C188154048 @default.
- W4311192774 hasConcept C18903297 @default.
- W4311192774 hasConcept C202583358 @default.
- W4311192774 hasConcept C33923547 @default.
- W4311192774 hasConcept C55399452 @default.
- W4311192774 hasConcept C67592535 @default.
- W4311192774 hasConcept C67715294 @default.
- W4311192774 hasConcept C86803240 @default.
- W4311192774 hasConceptScore W4311192774C105795698 @default.
- W4311192774 hasConceptScore W4311192774C120934525 @default.
- W4311192774 hasConceptScore W4311192774C128990827 @default.
- W4311192774 hasConceptScore W4311192774C139945424 @default.
- W4311192774 hasConceptScore W4311192774C150217764 @default.
- W4311192774 hasConceptScore W4311192774C188154048 @default.
- W4311192774 hasConceptScore W4311192774C18903297 @default.
- W4311192774 hasConceptScore W4311192774C202583358 @default.
- W4311192774 hasConceptScore W4311192774C33923547 @default.
- W4311192774 hasConceptScore W4311192774C55399452 @default.
- W4311192774 hasConceptScore W4311192774C67592535 @default.
- W4311192774 hasConceptScore W4311192774C67715294 @default.
- W4311192774 hasConceptScore W4311192774C86803240 @default.
- W4311192774 hasFunder F4320321001 @default.
- W4311192774 hasIssue "23" @default.
- W4311192774 hasLocation W43111927741 @default.
- W4311192774 hasOpenAccess W4311192774 @default.
- W4311192774 hasPrimaryLocation W43111927741 @default.
- W4311192774 hasRelatedWork W1997199759 @default.
- W4311192774 hasRelatedWork W2087927026 @default.
- W4311192774 hasRelatedWork W2767185216 @default.
- W4311192774 hasRelatedWork W2773560649 @default.
- W4311192774 hasRelatedWork W2933969434 @default.
- W4311192774 hasRelatedWork W3121369812 @default.
- W4311192774 hasRelatedWork W3176801684 @default.
- W4311192774 hasRelatedWork W3178576217 @default.
- W4311192774 hasRelatedWork W3186826611 @default.
- W4311192774 hasRelatedWork W4316658904 @default.
- W4311192774 hasVolume "12" @default.
- W4311192774 isParatext "false" @default.
- W4311192774 isRetracted "false" @default.
- W4311192774 workType "article" @default.