Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311192817> ?p ?o ?g. }
- W4311192817 endingPage "17842" @default.
- W4311192817 startingPage "17835" @default.
- W4311192817 abstract "The low photon energy and deep penetrating ability of near-infrared (NIR) light make it an ideal light source for a photoelectrochemical (PEC) immunosensing system. Absorption wavelengths of the metal–organic frameworks (MOFs) can be regulated by adjusting the metal ions and the conjugation degree of the ligands. Herein, an ionic liquid with a large conjugated structure was synthesized and was used as a ligand to coordinate with Nd ions to prepare Nd-MOF nanorods with a band gap of 1.26 eV. The Nd-MOF rods show a good photoabsorption property from 200 to 980 nm. A PEC platform was constructed by using Nd-MOF nanorods as the photoelectroactive element. A detachable double-stranded DNA labeled with alkaline phosphatase (ALP), which is specific to VEGF165, was immobilized onto the PEC sensing interface. After blocking unspecific active sites with bovine albumin, an NIR PEC aptasensing system was developed for VEGF165 detection. After being incubated in a mixture of VEGF165, l-ascorbic acid 2-phosphate (magnesium salt hydrate) (AAP), and chloroauric acid, the aptamers for VEGF165 were detached from the PEC aptasensing interface, thus resulting in the decrease of the charge-transfer resistance and the increase of the photocurrent response. The shedding of the aptamers also makes the ALP approach the electrode surface, thus catalyzing the reduction of AAP to produce ascorbic acid (AA). Subsequently, AA reduces in situ chloroauric acid to produce AuNPs on the Nd-MOF-based sensing interface. With the excellent conductivity and localized surface plasmon resonance effect, the AuNPs can accelerate the separation of electron–hole pairs generated from Nd-MOF nanorods, thus promoting the photoelectric conversion efficiency and achieving signal amplification. Under optimized conditions, the PEC responses were linearly related to the VEGF165 concentrations in the range of 0.01–100 ng mL–1 and exhibit a low detection limit of 3.51 pg mL–1 (S/N = 3). VEGF165 in human serum samples was detected by the NIR PEC aptasensor. Their concentrations were found to be well consistent with that obtained from ELISA. Furthermore, the PEC aptasensor demonstrated recoveries from 96.07 to 103.8%. The relative standard deviations were within 5%, indicating good accuracy and precision. The results further verify its practicability for clinical diagnosis." @default.
- W4311192817 created "2022-12-24" @default.
- W4311192817 creator A5009000071 @default.
- W4311192817 creator A5018286530 @default.
- W4311192817 creator A5019033605 @default.
- W4311192817 creator A5042201649 @default.
- W4311192817 creator A5058722197 @default.
- W4311192817 creator A5070536290 @default.
- W4311192817 creator A5073925367 @default.
- W4311192817 creator A5076460847 @default.
- W4311192817 date "2022-12-12" @default.
- W4311192817 modified "2023-10-16" @default.
- W4311192817 title "Signal-On Near-Infrared Photoelectrochemical Aptasensors for Sensing VEGF165 Based on Ionic Liquid-Functionalized Nd-MOF Nanorods and In-Site Formation of Gold Nanoparticles" @default.
- W4311192817 cites W1973108197 @default.
- W4311192817 cites W2033168226 @default.
- W4311192817 cites W2040875144 @default.
- W4311192817 cites W2053413640 @default.
- W4311192817 cites W2060605943 @default.
- W4311192817 cites W2169371925 @default.
- W4311192817 cites W2408765966 @default.
- W4311192817 cites W2429364861 @default.
- W4311192817 cites W2552419240 @default.
- W4311192817 cites W2791936684 @default.
- W4311192817 cites W2804860268 @default.
- W4311192817 cites W2810783849 @default.
- W4311192817 cites W2811273000 @default.
- W4311192817 cites W2818380927 @default.
- W4311192817 cites W2891703945 @default.
- W4311192817 cites W2893286623 @default.
- W4311192817 cites W2901405835 @default.
- W4311192817 cites W2941497708 @default.
- W4311192817 cites W2982464664 @default.
- W4311192817 cites W2989843589 @default.
- W4311192817 cites W2990958163 @default.
- W4311192817 cites W3012355657 @default.
- W4311192817 cites W3080173631 @default.
- W4311192817 cites W3088255640 @default.
- W4311192817 cites W3111903286 @default.
- W4311192817 cites W3117108098 @default.
- W4311192817 cites W3118202755 @default.
- W4311192817 cites W3118883157 @default.
- W4311192817 cites W3119762900 @default.
- W4311192817 cites W3128646645 @default.
- W4311192817 cites W3159751374 @default.
- W4311192817 cites W3159844250 @default.
- W4311192817 cites W3161950222 @default.
- W4311192817 cites W3163174555 @default.
- W4311192817 cites W3164513104 @default.
- W4311192817 cites W3199199432 @default.
- W4311192817 cites W3214142071 @default.
- W4311192817 cites W4206123624 @default.
- W4311192817 cites W4206663880 @default.
- W4311192817 cites W4210505881 @default.
- W4311192817 doi "https://doi.org/10.1021/acs.analchem.2c03583" @default.
- W4311192817 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36508733" @default.
- W4311192817 hasPublicationYear "2022" @default.
- W4311192817 type Work @default.
- W4311192817 citedByCount "4" @default.
- W4311192817 countsByYear W43111928172023 @default.
- W4311192817 crossrefType "journal-article" @default.
- W4311192817 hasAuthorship W4311192817A5009000071 @default.
- W4311192817 hasAuthorship W4311192817A5018286530 @default.
- W4311192817 hasAuthorship W4311192817A5019033605 @default.
- W4311192817 hasAuthorship W4311192817A5042201649 @default.
- W4311192817 hasAuthorship W4311192817A5058722197 @default.
- W4311192817 hasAuthorship W4311192817A5070536290 @default.
- W4311192817 hasAuthorship W4311192817A5073925367 @default.
- W4311192817 hasAuthorship W4311192817A5076460847 @default.
- W4311192817 hasConcept C104819515 @default.
- W4311192817 hasConcept C106847996 @default.
- W4311192817 hasConcept C126201875 @default.
- W4311192817 hasConcept C128972844 @default.
- W4311192817 hasConcept C155672457 @default.
- W4311192817 hasConcept C160756335 @default.
- W4311192817 hasConcept C171250308 @default.
- W4311192817 hasConcept C185592680 @default.
- W4311192817 hasConcept C192562407 @default.
- W4311192817 hasConcept C2779214877 @default.
- W4311192817 hasConcept C2779845233 @default.
- W4311192817 hasConcept C2986274086 @default.
- W4311192817 hasConcept C31903555 @default.
- W4311192817 hasConcept C49040817 @default.
- W4311192817 hasConcept C54355233 @default.
- W4311192817 hasConcept C55493867 @default.
- W4311192817 hasConcept C86803240 @default.
- W4311192817 hasConceptScore W4311192817C104819515 @default.
- W4311192817 hasConceptScore W4311192817C106847996 @default.
- W4311192817 hasConceptScore W4311192817C126201875 @default.
- W4311192817 hasConceptScore W4311192817C128972844 @default.
- W4311192817 hasConceptScore W4311192817C155672457 @default.
- W4311192817 hasConceptScore W4311192817C160756335 @default.
- W4311192817 hasConceptScore W4311192817C171250308 @default.
- W4311192817 hasConceptScore W4311192817C185592680 @default.
- W4311192817 hasConceptScore W4311192817C192562407 @default.
- W4311192817 hasConceptScore W4311192817C2779214877 @default.
- W4311192817 hasConceptScore W4311192817C2779845233 @default.
- W4311192817 hasConceptScore W4311192817C2986274086 @default.
- W4311192817 hasConceptScore W4311192817C31903555 @default.