Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311193885> ?p ?o ?g. }
- W4311193885 endingPage "21" @default.
- W4311193885 startingPage "1" @default.
- W4311193885 abstract "Machine learning algorithms, especially random forests (RFs), have become an integrated part of the modern scientific methodology and represent an efficient alternative to conventional parametric algorithms. This study aimed to assess the influence of data features and overdispersion on RF regression performance. We assessed the effect of types of predictors (100, 75, 50, and 20% continuous, and 100% categorical), the number of predictors (p = 816 and 24), and the sample size (N = 50, 250, and 1250) on RF parameter settings. We also compared RF performance to that of classical generalized linear models (Poisson, negative binomial, and zero-inflated Poisson) and the linear model applied to log-transformed data. Two real datasets were analysed to demonstrate the usefulness of RF for overdispersed data modelling. Goodness-of-fit statistics such as root mean square error (RMSE) and biases were used to determine RF accuracy and validity. Results revealed that the number of variables to be randomly selected for each split, the proportion of samples to train the model, the minimal number of samples within each terminal node, and RF regression performance are not influenced by the sample size, number, and type of predictors. However, the ratio of observations to the number of predictors affects the stability of the best RF parameters. RF performs well for all types of covariates and different levels of dispersion. The magnitude of dispersion does not significantly influence RF predictive validity. In contrast, its predictive accuracy is significantly influenced by the magnitude of dispersion in the response variable, conditional on the explanatory variables. RF has performed almost as well as the models of the classical Poisson family in the presence of overdispersion. Given RF’s advantages, it is an appropriate statistical alternative for counting data." @default.
- W4311193885 created "2022-12-24" @default.
- W4311193885 creator A5002326694 @default.
- W4311193885 creator A5037840642 @default.
- W4311193885 creator A5060881422 @default.
- W4311193885 date "2022-12-01" @default.
- W4311193885 modified "2023-10-15" @default.
- W4311193885 title "Random Forests in Count Data Modelling: An Analysis of the Influence of Data Features and Overdispersion on Regression Performance" @default.
- W4311193885 cites W1471436312 @default.
- W4311193885 cites W1520812622 @default.
- W4311193885 cites W1603335829 @default.
- W4311193885 cites W1644145788 @default.
- W4311193885 cites W1896563695 @default.
- W4311193885 cites W1972707698 @default.
- W4311193885 cites W1984524168 @default.
- W4311193885 cites W1985372952 @default.
- W4311193885 cites W1988195734 @default.
- W4311193885 cites W1995996526 @default.
- W4311193885 cites W2047081748 @default.
- W4311193885 cites W2051499613 @default.
- W4311193885 cites W2057442840 @default.
- W4311193885 cites W2087160026 @default.
- W4311193885 cites W2107018762 @default.
- W4311193885 cites W2112315008 @default.
- W4311193885 cites W2114075052 @default.
- W4311193885 cites W2114104545 @default.
- W4311193885 cites W2119634512 @default.
- W4311193885 cites W2141019129 @default.
- W4311193885 cites W2143481518 @default.
- W4311193885 cites W2162387923 @default.
- W4311193885 cites W2165118109 @default.
- W4311193885 cites W2179438025 @default.
- W4311193885 cites W2181164912 @default.
- W4311193885 cites W2216946510 @default.
- W4311193885 cites W2277881910 @default.
- W4311193885 cites W2302432179 @default.
- W4311193885 cites W2396900654 @default.
- W4311193885 cites W2753666478 @default.
- W4311193885 cites W2780266336 @default.
- W4311193885 cites W2911964244 @default.
- W4311193885 cites W2946181041 @default.
- W4311193885 cites W2957024489 @default.
- W4311193885 cites W3022573414 @default.
- W4311193885 cites W3121454289 @default.
- W4311193885 cites W3152961453 @default.
- W4311193885 cites W3189521760 @default.
- W4311193885 cites W32672528 @default.
- W4311193885 cites W4212883601 @default.
- W4311193885 cites W4246559506 @default.
- W4311193885 cites W4376453824 @default.
- W4311193885 doi "https://doi.org/10.1155/2022/2833537" @default.
- W4311193885 hasPublicationYear "2022" @default.
- W4311193885 type Work @default.
- W4311193885 citedByCount "0" @default.
- W4311193885 crossrefType "journal-article" @default.
- W4311193885 hasAuthorship W4311193885A5002326694 @default.
- W4311193885 hasAuthorship W4311193885A5037840642 @default.
- W4311193885 hasAuthorship W4311193885A5060881422 @default.
- W4311193885 hasBestOaLocation W43111938851 @default.
- W4311193885 hasConcept C100906024 @default.
- W4311193885 hasConcept C105795698 @default.
- W4311193885 hasConcept C117236510 @default.
- W4311193885 hasConcept C119043178 @default.
- W4311193885 hasConcept C129848803 @default.
- W4311193885 hasConcept C139945424 @default.
- W4311193885 hasConcept C144024400 @default.
- W4311193885 hasConcept C149923435 @default.
- W4311193885 hasConcept C152877465 @default.
- W4311193885 hasConcept C154945302 @default.
- W4311193885 hasConcept C169258074 @default.
- W4311193885 hasConcept C199335787 @default.
- W4311193885 hasConcept C2908647359 @default.
- W4311193885 hasConcept C33643355 @default.
- W4311193885 hasConcept C33923547 @default.
- W4311193885 hasConcept C41008148 @default.
- W4311193885 hasConcept C41587187 @default.
- W4311193885 hasConcept C48921125 @default.
- W4311193885 hasConcept C5274069 @default.
- W4311193885 hasConcept C73269764 @default.
- W4311193885 hasConcept C83546350 @default.
- W4311193885 hasConcept C91025261 @default.
- W4311193885 hasConceptScore W4311193885C100906024 @default.
- W4311193885 hasConceptScore W4311193885C105795698 @default.
- W4311193885 hasConceptScore W4311193885C117236510 @default.
- W4311193885 hasConceptScore W4311193885C119043178 @default.
- W4311193885 hasConceptScore W4311193885C129848803 @default.
- W4311193885 hasConceptScore W4311193885C139945424 @default.
- W4311193885 hasConceptScore W4311193885C144024400 @default.
- W4311193885 hasConceptScore W4311193885C149923435 @default.
- W4311193885 hasConceptScore W4311193885C152877465 @default.
- W4311193885 hasConceptScore W4311193885C154945302 @default.
- W4311193885 hasConceptScore W4311193885C169258074 @default.
- W4311193885 hasConceptScore W4311193885C199335787 @default.
- W4311193885 hasConceptScore W4311193885C2908647359 @default.
- W4311193885 hasConceptScore W4311193885C33643355 @default.
- W4311193885 hasConceptScore W4311193885C33923547 @default.
- W4311193885 hasConceptScore W4311193885C41008148 @default.
- W4311193885 hasConceptScore W4311193885C41587187 @default.