Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311194057> ?p ?o ?g. }
- W4311194057 endingPage "1697" @default.
- W4311194057 startingPage "1681" @default.
- W4311194057 abstract "Abstract The digital industrial revolution calls for smart manufacturing plants, i.e. plants that include sensors and vision systems accompanied with artificial intelligence and advanced data analytics in order to meet the required accuracy, reliability and productivity levels. In this paper, we introduce a surface analysis and classification approach based on a deep learning algorithm. The approach is intended to let machining centres recognise the adequacy of process parameters adopted for the milling operation performed, based on the phenomenological effects left on the machined surface. Indeed, the operator will be able to understand how to change process parameters to improve workpiece quality of subsequent parts by a reverse engineering procedure that reconstructs the process parameters that generated the analysed surface. A shallow convolutional neural network was proposed to work on surface image patches based on a limited training dataset of optimal and undesired cutting conditions. The architecture consists of a series of 3 stacked convolutional blocks. The performance of the proposed solution was validated through 5-fold cross-validation, measuring the mean and standard deviation of the f1-score metric. The algorithm arrived at outperformed the best state-of-the-art approach by 4.8 % when considering average classification performance." @default.
- W4311194057 created "2022-12-24" @default.
- W4311194057 creator A5011376043 @default.
- W4311194057 creator A5059344464 @default.
- W4311194057 creator A5063306002 @default.
- W4311194057 creator A5087275614 @default.
- W4311194057 date "2022-12-02" @default.
- W4311194057 modified "2023-10-14" @default.
- W4311194057 title "Assessment of milling condition by image processing of the produced surfaces" @default.
- W4311194057 cites W1901075642 @default.
- W4311194057 cites W2010148346 @default.
- W4311194057 cites W2044465660 @default.
- W4311194057 cites W2076597562 @default.
- W4311194057 cites W2087347434 @default.
- W4311194057 cites W2092072518 @default.
- W4311194057 cites W2108598243 @default.
- W4311194057 cites W2111072639 @default.
- W4311194057 cites W2155524176 @default.
- W4311194057 cites W2194775991 @default.
- W4311194057 cites W2245148488 @default.
- W4311194057 cites W2245473852 @default.
- W4311194057 cites W2302302587 @default.
- W4311194057 cites W2418691539 @default.
- W4311194057 cites W2468676150 @default.
- W4311194057 cites W2743142445 @default.
- W4311194057 cites W2767541512 @default.
- W4311194057 cites W2782812883 @default.
- W4311194057 cites W2802877483 @default.
- W4311194057 cites W2888663528 @default.
- W4311194057 cites W2890747436 @default.
- W4311194057 cites W2893467282 @default.
- W4311194057 cites W2911964244 @default.
- W4311194057 cites W2945708832 @default.
- W4311194057 cites W2963446712 @default.
- W4311194057 cites W2963587345 @default.
- W4311194057 cites W2963658551 @default.
- W4311194057 cites W2967730897 @default.
- W4311194057 cites W3024912007 @default.
- W4311194057 cites W3087558721 @default.
- W4311194057 cites W3090452610 @default.
- W4311194057 cites W3105297345 @default.
- W4311194057 cites W3154766860 @default.
- W4311194057 cites W4237591687 @default.
- W4311194057 cites W4256561644 @default.
- W4311194057 cites W4298082496 @default.
- W4311194057 doi "https://doi.org/10.1007/s00170-022-10516-5" @default.
- W4311194057 hasPublicationYear "2022" @default.
- W4311194057 type Work @default.
- W4311194057 citedByCount "0" @default.
- W4311194057 crossrefType "journal-article" @default.
- W4311194057 hasAuthorship W4311194057A5011376043 @default.
- W4311194057 hasAuthorship W4311194057A5059344464 @default.
- W4311194057 hasAuthorship W4311194057A5063306002 @default.
- W4311194057 hasAuthorship W4311194057A5087275614 @default.
- W4311194057 hasBestOaLocation W43111940571 @default.
- W4311194057 hasConcept C104317684 @default.
- W4311194057 hasConcept C111919701 @default.
- W4311194057 hasConcept C119857082 @default.
- W4311194057 hasConcept C121332964 @default.
- W4311194057 hasConcept C127413603 @default.
- W4311194057 hasConcept C13736549 @default.
- W4311194057 hasConcept C153180895 @default.
- W4311194057 hasConcept C154945302 @default.
- W4311194057 hasConcept C158448853 @default.
- W4311194057 hasConcept C163258240 @default.
- W4311194057 hasConcept C17020691 @default.
- W4311194057 hasConcept C176217482 @default.
- W4311194057 hasConcept C185592680 @default.
- W4311194057 hasConcept C21547014 @default.
- W4311194057 hasConcept C2524010 @default.
- W4311194057 hasConcept C2776799497 @default.
- W4311194057 hasConcept C2780841897 @default.
- W4311194057 hasConcept C33923547 @default.
- W4311194057 hasConcept C41008148 @default.
- W4311194057 hasConcept C43214815 @default.
- W4311194057 hasConcept C50644808 @default.
- W4311194057 hasConcept C523214423 @default.
- W4311194057 hasConcept C55493867 @default.
- W4311194057 hasConcept C62520636 @default.
- W4311194057 hasConcept C78519656 @default.
- W4311194057 hasConcept C81363708 @default.
- W4311194057 hasConcept C86339819 @default.
- W4311194057 hasConcept C98045186 @default.
- W4311194057 hasConceptScore W4311194057C104317684 @default.
- W4311194057 hasConceptScore W4311194057C111919701 @default.
- W4311194057 hasConceptScore W4311194057C119857082 @default.
- W4311194057 hasConceptScore W4311194057C121332964 @default.
- W4311194057 hasConceptScore W4311194057C127413603 @default.
- W4311194057 hasConceptScore W4311194057C13736549 @default.
- W4311194057 hasConceptScore W4311194057C153180895 @default.
- W4311194057 hasConceptScore W4311194057C154945302 @default.
- W4311194057 hasConceptScore W4311194057C158448853 @default.
- W4311194057 hasConceptScore W4311194057C163258240 @default.
- W4311194057 hasConceptScore W4311194057C17020691 @default.
- W4311194057 hasConceptScore W4311194057C176217482 @default.
- W4311194057 hasConceptScore W4311194057C185592680 @default.
- W4311194057 hasConceptScore W4311194057C21547014 @default.
- W4311194057 hasConceptScore W4311194057C2524010 @default.