Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311194870> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4311194870 endingPage "B39" @default.
- W4311194870 startingPage "B39" @default.
- W4311194870 abstract "Abstract IntroductionImmunotherapy is changing the standard of care in cancer treatment. Immune checkpoint blockers (ICBs) that block the checkpoint programs used by tumor cells to inhibit the immune response have been approved by the US Food and Drug Administration with varying efficacy across cancer types. Given the clear benefits of ICB in some patients, there is an urgent research need to understand the determinants of ICB efficacy so more patients can benefit. To this end, there is growing interest in the interactions between immune cells and tumor cells as well as other extrinsic factors that can impact ICB therapy. Recent studies have shown that the microbiome can modulate the efficacy of immunotherapy. Specifically, clinical and therapeutic outcomes improved in a subset of ICB-refractory patients treated with fecal microbiota transplants (FMTs) from melanoma patients who responded to ICB therapy in combination with additional cycles of ICB therapy suggesting a synergistic effect of the gut microbiome. However, there is limited information and often inconsistencies among studies about the effect of bacteria on the immune system and checkpoint immunotherapy.MethodologyTo study the mechanisms by which the gut microbiome affects components of the immune system and response to ICB, we developed a mechanistic mathematical model for tumor growth in terms of immune components as features. The model simulates the temporal changes in the immune system during tumor progression and checkpoint immunotherapy. More specifically, the model simulates the tumor cells, relevant immune cells, and cytokines. The model was used for the reproduction of tumor growth curves from several preclinical FMT studies with ICB treatment. To determine the possible effect of the microbiome on the immune components, existing statistical approaches were used between experimental microbiome data and the immune components of the model.ResultsThe mathematical model was able to reproduce the experimental tumor growth curves by varying only two critical parameters. These parameters identify two possible mechanisms by which the gut microbiome can influence the immune response: i) the killing potential of tumor cells by immune cells and ii) the activation of the adaptive immune system. Furthermore, the model predictions agree with the observation that ICB treatment is only effective with FMT from responder patients. Additionally, the association analysis was able to identify specific microbes that induce positive and negative effects for ICB, and how these microbes affect various components of the immune system.ConclusionOur analysis identifies possible mechanisms by which the microbiome affects checkpoint immunotherapy and predicts not only which constituents of the microbiome have positive and negative effects but also identifies how these microbes are related to immune mechanisms. This information could be valuable for designing future targeted studies to validate these possible mechanisms at the cell and molecular levels. Citation Format: Constantinos Harkos, Andreas Hadjigeorgiou, Aditya K. Mishra, Golnaz Morad, Sarah Johnson, Nadim J. Ajami, Triantafyllos Stylianopoulos, Lance L. Munn, Jeniffer A. Wargo, Rakesh K. Jain. Modulation of cancer immunotherapy by the microbiome: Insights from computational analyses of preclinical studies [abstract]. In: Proceedings of the AACR Special Conference: Tumor Immunology and Immunotherapy; 2022 Oct 21-24; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2022;10(12 Suppl):Abstract nr B39." @default.
- W4311194870 created "2022-12-24" @default.
- W4311194870 creator A5001539646 @default.
- W4311194870 creator A5013182887 @default.
- W4311194870 creator A5015585176 @default.
- W4311194870 creator A5017502795 @default.
- W4311194870 creator A5021359372 @default.
- W4311194870 creator A5036627329 @default.
- W4311194870 creator A5055236725 @default.
- W4311194870 creator A5057504407 @default.
- W4311194870 creator A5067876189 @default.
- W4311194870 creator A5084888693 @default.
- W4311194870 date "2022-12-01" @default.
- W4311194870 modified "2023-10-16" @default.
- W4311194870 title "Abstract B39: Modulation of cancer immunotherapy by the microbiome: Insights from computational analyses of preclinical studies" @default.
- W4311194870 doi "https://doi.org/10.1158/2326-6074.tumimm22-b39" @default.
- W4311194870 hasPublicationYear "2022" @default.
- W4311194870 type Work @default.
- W4311194870 citedByCount "0" @default.
- W4311194870 crossrefType "journal-article" @default.
- W4311194870 hasAuthorship W4311194870A5001539646 @default.
- W4311194870 hasAuthorship W4311194870A5013182887 @default.
- W4311194870 hasAuthorship W4311194870A5015585176 @default.
- W4311194870 hasAuthorship W4311194870A5017502795 @default.
- W4311194870 hasAuthorship W4311194870A5021359372 @default.
- W4311194870 hasAuthorship W4311194870A5036627329 @default.
- W4311194870 hasAuthorship W4311194870A5055236725 @default.
- W4311194870 hasAuthorship W4311194870A5057504407 @default.
- W4311194870 hasAuthorship W4311194870A5067876189 @default.
- W4311194870 hasAuthorship W4311194870A5084888693 @default.
- W4311194870 hasConcept C121608353 @default.
- W4311194870 hasConcept C126322002 @default.
- W4311194870 hasConcept C143121216 @default.
- W4311194870 hasConcept C203014093 @default.
- W4311194870 hasConcept C2776107976 @default.
- W4311194870 hasConcept C2777658100 @default.
- W4311194870 hasConcept C2777701055 @default.
- W4311194870 hasConcept C2780674031 @default.
- W4311194870 hasConcept C2780851360 @default.
- W4311194870 hasConcept C502942594 @default.
- W4311194870 hasConcept C60644358 @default.
- W4311194870 hasConcept C71924100 @default.
- W4311194870 hasConcept C86803240 @default.
- W4311194870 hasConcept C8891405 @default.
- W4311194870 hasConceptScore W4311194870C121608353 @default.
- W4311194870 hasConceptScore W4311194870C126322002 @default.
- W4311194870 hasConceptScore W4311194870C143121216 @default.
- W4311194870 hasConceptScore W4311194870C203014093 @default.
- W4311194870 hasConceptScore W4311194870C2776107976 @default.
- W4311194870 hasConceptScore W4311194870C2777658100 @default.
- W4311194870 hasConceptScore W4311194870C2777701055 @default.
- W4311194870 hasConceptScore W4311194870C2780674031 @default.
- W4311194870 hasConceptScore W4311194870C2780851360 @default.
- W4311194870 hasConceptScore W4311194870C502942594 @default.
- W4311194870 hasConceptScore W4311194870C60644358 @default.
- W4311194870 hasConceptScore W4311194870C71924100 @default.
- W4311194870 hasConceptScore W4311194870C86803240 @default.
- W4311194870 hasConceptScore W4311194870C8891405 @default.
- W4311194870 hasIssue "12_Supplement" @default.
- W4311194870 hasLocation W43111948701 @default.
- W4311194870 hasOpenAccess W4311194870 @default.
- W4311194870 hasPrimaryLocation W43111948701 @default.
- W4311194870 hasRelatedWork W2791825614 @default.
- W4311194870 hasRelatedWork W3134152892 @default.
- W4311194870 hasRelatedWork W3134459122 @default.
- W4311194870 hasRelatedWork W3153709335 @default.
- W4311194870 hasRelatedWork W3177607563 @default.
- W4311194870 hasRelatedWork W3217412908 @default.
- W4311194870 hasRelatedWork W4213275083 @default.
- W4311194870 hasRelatedWork W4281389645 @default.
- W4311194870 hasRelatedWork W4285731353 @default.
- W4311194870 hasRelatedWork W4304979265 @default.
- W4311194870 hasVolume "10" @default.
- W4311194870 isParatext "false" @default.
- W4311194870 isRetracted "false" @default.
- W4311194870 workType "article" @default.