Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311194876> ?p ?o ?g. }
- W4311194876 abstract "Background: Accurate assessment of fetal descent by monitoring the fetal head (FH) station remains a clinical challenge in guiding obstetric management. Angle of progression (AoP) has been suggested to be a reliable and reproducible parameter for the assessment of FH descent. Methods: A novel framework, including image segmentation, target fitting and AoP calculation, is proposed for evaluating fetal descent. For image segmentation, this study presents a novel double branch segmentation network (DBSN), which consists of two parts: an encoding part receives image input, and a decoding part composed of deformable convolutional blocks and ordinary convolutional blocks. The decoding part includes the lower and upper branches, and the feature map of the lower branch is used as the input of the upper branch to assist the upper branch in decoding after being constrained by the attention gate (AG). Given an original transperineal ultrasound (TPU) image, areas of the pubic symphysis (PS) and FH are firstly segmented using the proposed DBSN, the ellipse contours of segmented regions are secondly fitted with the least square method, and three endpoints are finally determined for calculating AoP. Results: Our private dataset with 313 transperineal ultrasound (TPU) images was used for model evaluation with 5-fold cross-validation. The proposed method achieves the highest Dice coefficient (93.4%), the smallest Average Surface Distance (6.268 pixels) and the lowest AoP difference (5.993°) by comparing four state-of-the-art methods. Similar results (Dice coefficient: 91.7%, Average Surface Distance: 7.729 pixels: AoP difference: 5.110°) were obtained on a public dataset with >3,700 TPU images for evaluating its generalization performance. Conclusion: The proposed framework may be used for the automatic measurement of AoP with high accuracy and generalization performance. However, its clinical availability needs to be further evaluated." @default.
- W4311194876 created "2022-12-24" @default.
- W4311194876 creator A5007024868 @default.
- W4311194876 creator A5007499099 @default.
- W4311194876 creator A5009284742 @default.
- W4311194876 creator A5013039708 @default.
- W4311194876 creator A5020319455 @default.
- W4311194876 creator A5020341921 @default.
- W4311194876 creator A5048231811 @default.
- W4311194876 creator A5053183839 @default.
- W4311194876 creator A5056813163 @default.
- W4311194876 creator A5057249313 @default.
- W4311194876 creator A5070571713 @default.
- W4311194876 creator A5070645416 @default.
- W4311194876 creator A5087159248 @default.
- W4311194876 date "2022-12-02" @default.
- W4311194876 modified "2023-10-14" @default.
- W4311194876 title "A framework for computing angle of progression from transperineal ultrasound images for evaluating fetal head descent using a novel double branch network" @default.
- W4311194876 cites W1506852666 @default.
- W4311194876 cites W1985817012 @default.
- W4311194876 cites W1990141757 @default.
- W4311194876 cites W1995805816 @default.
- W4311194876 cites W2009103168 @default.
- W4311194876 cites W2016547117 @default.
- W4311194876 cites W2035462974 @default.
- W4311194876 cites W2038388328 @default.
- W4311194876 cites W2048725876 @default.
- W4311194876 cites W2075246700 @default.
- W4311194876 cites W2085281262 @default.
- W4311194876 cites W2096230879 @default.
- W4311194876 cites W2109038417 @default.
- W4311194876 cites W2118727855 @default.
- W4311194876 cites W2153178980 @default.
- W4311194876 cites W2177727692 @default.
- W4311194876 cites W2314631086 @default.
- W4311194876 cites W2567053317 @default.
- W4311194876 cites W2591372931 @default.
- W4311194876 cites W2671672656 @default.
- W4311194876 cites W2919115771 @default.
- W4311194876 cites W2978142302 @default.
- W4311194876 cites W3000155670 @default.
- W4311194876 cites W3000228935 @default.
- W4311194876 cites W3034855613 @default.
- W4311194876 cites W3036165397 @default.
- W4311194876 cites W3045664133 @default.
- W4311194876 cites W3046109687 @default.
- W4311194876 cites W3125869075 @default.
- W4311194876 cites W4220731947 @default.
- W4311194876 cites W4294295589 @default.
- W4311194876 doi "https://doi.org/10.3389/fphys.2022.940150" @default.
- W4311194876 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36531181" @default.
- W4311194876 hasPublicationYear "2022" @default.
- W4311194876 type Work @default.
- W4311194876 citedByCount "0" @default.
- W4311194876 crossrefType "journal-article" @default.
- W4311194876 hasAuthorship W4311194876A5007024868 @default.
- W4311194876 hasAuthorship W4311194876A5007499099 @default.
- W4311194876 hasAuthorship W4311194876A5009284742 @default.
- W4311194876 hasAuthorship W4311194876A5013039708 @default.
- W4311194876 hasAuthorship W4311194876A5020319455 @default.
- W4311194876 hasAuthorship W4311194876A5020341921 @default.
- W4311194876 hasAuthorship W4311194876A5048231811 @default.
- W4311194876 hasAuthorship W4311194876A5053183839 @default.
- W4311194876 hasAuthorship W4311194876A5056813163 @default.
- W4311194876 hasAuthorship W4311194876A5057249313 @default.
- W4311194876 hasAuthorship W4311194876A5070571713 @default.
- W4311194876 hasAuthorship W4311194876A5070645416 @default.
- W4311194876 hasAuthorship W4311194876A5087159248 @default.
- W4311194876 hasBestOaLocation W43111948761 @default.
- W4311194876 hasConcept C11413529 @default.
- W4311194876 hasConcept C124504099 @default.
- W4311194876 hasConcept C138885662 @default.
- W4311194876 hasConcept C153180895 @default.
- W4311194876 hasConcept C154945302 @default.
- W4311194876 hasConcept C160633673 @default.
- W4311194876 hasConcept C163892561 @default.
- W4311194876 hasConcept C172680121 @default.
- W4311194876 hasConcept C2524010 @default.
- W4311194876 hasConcept C2776401178 @default.
- W4311194876 hasConcept C2779234561 @default.
- W4311194876 hasConcept C2779811377 @default.
- W4311194876 hasConcept C31972630 @default.
- W4311194876 hasConcept C33923547 @default.
- W4311194876 hasConcept C41008148 @default.
- W4311194876 hasConcept C41895202 @default.
- W4311194876 hasConcept C54355233 @default.
- W4311194876 hasConcept C57273362 @default.
- W4311194876 hasConcept C74261601 @default.
- W4311194876 hasConcept C86803240 @default.
- W4311194876 hasConcept C89600930 @default.
- W4311194876 hasConceptScore W4311194876C11413529 @default.
- W4311194876 hasConceptScore W4311194876C124504099 @default.
- W4311194876 hasConceptScore W4311194876C138885662 @default.
- W4311194876 hasConceptScore W4311194876C153180895 @default.
- W4311194876 hasConceptScore W4311194876C154945302 @default.
- W4311194876 hasConceptScore W4311194876C160633673 @default.
- W4311194876 hasConceptScore W4311194876C163892561 @default.
- W4311194876 hasConceptScore W4311194876C172680121 @default.
- W4311194876 hasConceptScore W4311194876C2524010 @default.
- W4311194876 hasConceptScore W4311194876C2776401178 @default.