Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311212916> ?p ?o ?g. }
- W4311212916 endingPage "37" @default.
- W4311212916 startingPage "1" @default.
- W4311212916 abstract "Recently, generative adversarial networks (GANs) have progressed enormously, which makes them able to learn complex data distributions in particular faces. More and more efficient GAN architectures have been designed and proposed to learn the different variations of faces, such as cross pose, age, expression, and style. These GAN-based approaches need to be reviewed, discussed, and categorized in terms of architectures, applications, and metrics. Several reviews that focus on the use and advances of GAN in general have been proposed. However, to the best of our knowledge, the GAN models applied to the face, which we call facial GANs , have never been addressed. In this article, we review facial GANs and their different applications. We mainly focus on architectures, problems, and performance evaluation with respect to each application and used datasets. More precisely, we review the progress of architectures and discuss the contributions and limits of each. Then, we expose the encountered problems of facial GANs and propose solutions to handle them. Additionally, as GAN evaluation has become a notable current defiance, we investigate the state-of-the-art quantitative and qualitative evaluation metrics and their applications. We conclude this work with a discussion on the face generation challenges and propose open research issues." @default.
- W4311212916 created "2022-12-24" @default.
- W4311212916 creator A5010455422 @default.
- W4311212916 creator A5026522015 @default.
- W4311212916 creator A5065642961 @default.
- W4311212916 creator A5069092245 @default.
- W4311212916 creator A5078017466 @default.
- W4311212916 date "2022-12-03" @default.
- W4311212916 modified "2023-09-30" @default.
- W4311212916 title "Generative Adversarial Networks for Face Generation: A Survey" @default.
- W4311212916 cites W2587706859 @default.
- W4311212916 cites W2592232824 @default.
- W4311212916 cites W2617561348 @default.
- W4311212916 cites W2737047298 @default.
- W4311212916 cites W2739761758 @default.
- W4311212916 cites W2755577605 @default.
- W4311212916 cites W2765811365 @default.
- W4311212916 cites W2772024431 @default.
- W4311212916 cites W2790072229 @default.
- W4311212916 cites W2792520336 @default.
- W4311212916 cites W2798553619 @default.
- W4311212916 cites W2798575809 @default.
- W4311212916 cites W2798583514 @default.
- W4311212916 cites W2805080735 @default.
- W4311212916 cites W2805613995 @default.
- W4311212916 cites W2807869636 @default.
- W4311212916 cites W2810399501 @default.
- W4311212916 cites W2884066303 @default.
- W4311212916 cites W2884460600 @default.
- W4311212916 cites W2895749211 @default.
- W4311212916 cites W2899901572 @default.
- W4311212916 cites W2902017744 @default.
- W4311212916 cites W2908757886 @default.
- W4311212916 cites W2910603373 @default.
- W4311212916 cites W2910883248 @default.
- W4311212916 cites W2917343039 @default.
- W4311212916 cites W2921353139 @default.
- W4311212916 cites W2923456422 @default.
- W4311212916 cites W2939645724 @default.
- W4311212916 cites W2954388914 @default.
- W4311212916 cites W2962770929 @default.
- W4311212916 cites W2962785568 @default.
- W4311212916 cites W2962793481 @default.
- W4311212916 cites W2962827684 @default.
- W4311212916 cites W2963073614 @default.
- W4311212916 cites W2963100452 @default.
- W4311212916 cites W2963115481 @default.
- W4311212916 cites W2963185411 @default.
- W4311212916 cites W2963278610 @default.
- W4311212916 cites W2963320782 @default.
- W4311212916 cites W2963364701 @default.
- W4311212916 cites W2963391470 @default.
- W4311212916 cites W2963435050 @default.
- W4311212916 cites W2963470893 @default.
- W4311212916 cites W2963522749 @default.
- W4311212916 cites W2963626105 @default.
- W4311212916 cites W2963667985 @default.
- W4311212916 cites W2963767194 @default.
- W4311212916 cites W2963800363 @default.
- W4311212916 cites W2963917969 @default.
- W4311212916 cites W2964261768 @default.
- W4311212916 cites W2964337551 @default.
- W4311212916 cites W2964339532 @default.
- W4311212916 cites W2964833232 @default.
- W4311212916 cites W2971058209 @default.
- W4311212916 cites W2980844350 @default.
- W4311212916 cites W2982763192 @default.
- W4311212916 cites W2988149145 @default.
- W4311212916 cites W2990452356 @default.
- W4311212916 cites W2992005611 @default.
- W4311212916 cites W2996627077 @default.
- W4311212916 cites W3000996870 @default.
- W4311212916 cites W3009262613 @default.
- W4311212916 cites W3010003739 @default.
- W4311212916 cites W3011140723 @default.
- W4311212916 cites W3014702863 @default.
- W4311212916 cites W3015698767 @default.
- W4311212916 cites W3017300133 @default.
- W4311212916 cites W3020995211 @default.
- W4311212916 cites W3024079478 @default.
- W4311212916 cites W3026802938 @default.
- W4311212916 cites W3030681797 @default.
- W4311212916 cites W3034371424 @default.
- W4311212916 cites W3035169015 @default.
- W4311212916 cites W3035231706 @default.
- W4311212916 cites W3035382289 @default.
- W4311212916 cites W3035413889 @default.
- W4311212916 cites W3035574324 @default.
- W4311212916 cites W3035581100 @default.
- W4311212916 cites W3035653890 @default.
- W4311212916 cites W3094954720 @default.
- W4311212916 cites W3095487666 @default.
- W4311212916 cites W3098643866 @default.
- W4311212916 cites W3109331060 @default.
- W4311212916 cites W3109432287 @default.
- W4311212916 cites W3112539661 @default.
- W4311212916 cites W3120602499 @default.
- W4311212916 cites W3126434301 @default.