Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311214283> ?p ?o ?g. }
- W4311214283 endingPage "117014" @default.
- W4311214283 startingPage "117014" @default.
- W4311214283 abstract "An artificial neural network (ANN) is a biologically inspired computational technique that imitates the behavior and learning process of the human brain. In this study, ANN technique was applied to assess the gasification of municipal solid waste (MSW) with the aim of enhancing the H2 production. The experiments were conducted using a horizontal tube reactor under different parameters: temperatures, MSW loadings, residence times, and equivalence ratios. The input and output variables (released gases) were tested and trained using back-propagation algorithm, and the data distribution by K-fold contrivance. The values of the training (80% data) and validation (20% data) dataset were found satisfactory. The values of regression coefficient (R2) for the training phase were lied between 0.9392 and 0.9991, and 0.9363 and 0.993824 for the testing phase. Whereas; the values of root mean square error (RSME) for the training phase were lied between 0.4111 and 0.8422, and between 0.1476 and 0.7320 for the testing phase. Higher H2 production of 42.1 vol% was produced at the higher reaction temperature of 900 °C with LHV of 11.2 MJ/Nm3. According to the tar analysis, the dominant compounds were aromatics (17 compounds) followed by polycyclic aromatic, phenyl, aliphatic, aromatic heterocyclic, polycyclic, and aromatic ketone compounds." @default.
- W4311214283 created "2022-12-24" @default.
- W4311214283 creator A5017519155 @default.
- W4311214283 creator A5018795828 @default.
- W4311214283 creator A5039948198 @default.
- W4311214283 creator A5040687567 @default.
- W4311214283 creator A5066636281 @default.
- W4311214283 creator A5072781556 @default.
- W4311214283 creator A5078253421 @default.
- W4311214283 creator A5078535915 @default.
- W4311214283 creator A5087414147 @default.
- W4311214283 date "2023-02-01" @default.
- W4311214283 modified "2023-10-18" @default.
- W4311214283 title "Investigation of enhanced H2 production from municipal solid waste gasification via artificial neural network with data on tar compounds" @default.
- W4311214283 cites W1505789435 @default.
- W4311214283 cites W1587295612 @default.
- W4311214283 cites W1827843802 @default.
- W4311214283 cites W1897146939 @default.
- W4311214283 cites W1968186331 @default.
- W4311214283 cites W1973558409 @default.
- W4311214283 cites W1988867856 @default.
- W4311214283 cites W1994691429 @default.
- W4311214283 cites W1994743524 @default.
- W4311214283 cites W1996039992 @default.
- W4311214283 cites W2012701902 @default.
- W4311214283 cites W2029829009 @default.
- W4311214283 cites W2033244096 @default.
- W4311214283 cites W2041838186 @default.
- W4311214283 cites W2043644862 @default.
- W4311214283 cites W2047293410 @default.
- W4311214283 cites W2047680925 @default.
- W4311214283 cites W2055262618 @default.
- W4311214283 cites W2067631560 @default.
- W4311214283 cites W2068033719 @default.
- W4311214283 cites W2071513834 @default.
- W4311214283 cites W2075474542 @default.
- W4311214283 cites W2078659027 @default.
- W4311214283 cites W2085421387 @default.
- W4311214283 cites W2137785026 @default.
- W4311214283 cites W2141920140 @default.
- W4311214283 cites W2153389493 @default.
- W4311214283 cites W2238406582 @default.
- W4311214283 cites W2276471589 @default.
- W4311214283 cites W2521641860 @default.
- W4311214283 cites W2536080554 @default.
- W4311214283 cites W2749311661 @default.
- W4311214283 cites W276410489 @default.
- W4311214283 cites W2768550134 @default.
- W4311214283 cites W2781804609 @default.
- W4311214283 cites W2783335516 @default.
- W4311214283 cites W2795777039 @default.
- W4311214283 cites W2884604059 @default.
- W4311214283 cites W2891810540 @default.
- W4311214283 cites W2921322130 @default.
- W4311214283 cites W2946374187 @default.
- W4311214283 cites W2975930579 @default.
- W4311214283 cites W3006478309 @default.
- W4311214283 cites W3091991916 @default.
- W4311214283 cites W3093974297 @default.
- W4311214283 cites W3095498156 @default.
- W4311214283 cites W3138597452 @default.
- W4311214283 cites W3155050138 @default.
- W4311214283 cites W4200234120 @default.
- W4311214283 cites W4200408236 @default.
- W4311214283 cites W4206023194 @default.
- W4311214283 cites W4221004848 @default.
- W4311214283 cites W4224274248 @default.
- W4311214283 cites W4229332075 @default.
- W4311214283 cites W4281387411 @default.
- W4311214283 cites W4283762837 @default.
- W4311214283 doi "https://doi.org/10.1016/j.jenvman.2022.117014" @default.
- W4311214283 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36516712" @default.
- W4311214283 hasPublicationYear "2023" @default.
- W4311214283 type Work @default.
- W4311214283 citedByCount "5" @default.
- W4311214283 countsByYear W43112142832023 @default.
- W4311214283 crossrefType "journal-article" @default.
- W4311214283 hasAuthorship W4311214283A5017519155 @default.
- W4311214283 hasAuthorship W4311214283A5018795828 @default.
- W4311214283 hasAuthorship W4311214283A5039948198 @default.
- W4311214283 hasAuthorship W4311214283A5040687567 @default.
- W4311214283 hasAuthorship W4311214283A5066636281 @default.
- W4311214283 hasAuthorship W4311214283A5072781556 @default.
- W4311214283 hasAuthorship W4311214283A5078253421 @default.
- W4311214283 hasAuthorship W4311214283A5078535915 @default.
- W4311214283 hasAuthorship W4311214283A5087414147 @default.
- W4311214283 hasConcept C105795698 @default.
- W4311214283 hasConcept C127413603 @default.
- W4311214283 hasConcept C139945424 @default.
- W4311214283 hasConcept C154945302 @default.
- W4311214283 hasConcept C185592680 @default.
- W4311214283 hasConcept C186060115 @default.
- W4311214283 hasConcept C192562407 @default.
- W4311214283 hasConcept C192643346 @default.
- W4311214283 hasConcept C199360897 @default.
- W4311214283 hasConcept C2780092901 @default.
- W4311214283 hasConcept C33923547 @default.
- W4311214283 hasConcept C39432304 @default.