Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311218997> ?p ?o ?g. }
- W4311218997 abstract "Abstract Post-stroke cognitive impairment is a common complication of stroke. It reduces the rehabilitation efficacy and disease prognosis of patients. Many factors may be related to cognitive impairment after stroke, including demographic (e.g. age, gender and educational level), history (e.g. hypertension, diabetes, hyperlipidaemia, smoking and drinking) and examination characteristics (e.g. lesion nature, location, side and inflammatory markers). However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. In addition, no further research on the risk prediction of cognitive impairment after stroke has been conducted. We use a hybrid deep learning model of XGBoost and deep neural network to predict the risk of cognitive impairment in stroke patients for studying the effects of physiological and psychological factors on such a risk. We firstly consider 46 original input features and their cross-product transformation as the interaction amongst binary features, and then, we compare the proposed model with several benchmarks on the basis of various indicators to prove its effectiveness. Lastly, we identify the first 36 factors that affect the risk of fracture in diabetic patients." @default.
- W4311218997 created "2022-12-24" @default.
- W4311218997 creator A5007957123 @default.
- W4311218997 creator A5025797681 @default.
- W4311218997 creator A5031102018 @default.
- W4311218997 date "2022-12-12" @default.
- W4311218997 modified "2023-10-16" @default.
- W4311218997 title "Hybrid deep learning model for the risk prediction of cognitive impairment in stroke patients" @default.
- W4311218997 cites W1598561536 @default.
- W4311218997 cites W1971155504 @default.
- W4311218997 cites W1997571923 @default.
- W4311218997 cites W2046082849 @default.
- W4311218997 cites W2065684882 @default.
- W4311218997 cites W2102198125 @default.
- W4311218997 cites W2141533446 @default.
- W4311218997 cites W2141554686 @default.
- W4311218997 cites W2349936480 @default.
- W4311218997 cites W2350997045 @default.
- W4311218997 cites W2569272946 @default.
- W4311218997 cites W2581082771 @default.
- W4311218997 cites W2609521869 @default.
- W4311218997 cites W2617669016 @default.
- W4311218997 cites W2736945546 @default.
- W4311218997 cites W2741094455 @default.
- W4311218997 cites W2751489671 @default.
- W4311218997 cites W2753954045 @default.
- W4311218997 cites W2757339229 @default.
- W4311218997 cites W2770295564 @default.
- W4311218997 cites W2781734014 @default.
- W4311218997 cites W2789301976 @default.
- W4311218997 cites W2789956930 @default.
- W4311218997 cites W2790751088 @default.
- W4311218997 cites W2791142503 @default.
- W4311218997 cites W2803677800 @default.
- W4311218997 cites W2883459317 @default.
- W4311218997 cites W2884107328 @default.
- W4311218997 cites W2887808321 @default.
- W4311218997 cites W2897078688 @default.
- W4311218997 cites W2911605224 @default.
- W4311218997 cites W2916323829 @default.
- W4311218997 cites W2917303411 @default.
- W4311218997 cites W2919115771 @default.
- W4311218997 cites W2920972911 @default.
- W4311218997 cites W2924878456 @default.
- W4311218997 cites W2950669388 @default.
- W4311218997 cites W2967412240 @default.
- W4311218997 cites W2972183964 @default.
- W4311218997 cites W2982326328 @default.
- W4311218997 cites W2987249807 @default.
- W4311218997 cites W2992350531 @default.
- W4311218997 cites W2993845530 @default.
- W4311218997 cites W2998393945 @default.
- W4311218997 cites W2998462777 @default.
- W4311218997 cites W2999417355 @default.
- W4311218997 cites W2999494042 @default.
- W4311218997 cites W3001058810 @default.
- W4311218997 cites W3003775010 @default.
- W4311218997 cites W3004244623 @default.
- W4311218997 cites W3010604307 @default.
- W4311218997 cites W3010687358 @default.
- W4311218997 cites W3014784496 @default.
- W4311218997 cites W3021523605 @default.
- W4311218997 cites W3023641830 @default.
- W4311218997 cites W3023868906 @default.
- W4311218997 cites W3029534032 @default.
- W4311218997 cites W3049758648 @default.
- W4311218997 cites W3085402642 @default.
- W4311218997 cites W3088878453 @default.
- W4311218997 cites W3096330623 @default.
- W4311218997 cites W3098977020 @default.
- W4311218997 cites W3106032784 @default.
- W4311218997 cites W3107189462 @default.
- W4311218997 cites W3125194583 @default.
- W4311218997 cites W3162497425 @default.
- W4311218997 cites W3173952098 @default.
- W4311218997 cites W3196648722 @default.
- W4311218997 cites W3212834023 @default.
- W4311218997 cites W4211253314 @default.
- W4311218997 cites W4288400169 @default.
- W4311218997 doi "https://doi.org/10.21203/rs.3.rs-2318006/v1" @default.
- W4311218997 hasPublicationYear "2022" @default.
- W4311218997 type Work @default.
- W4311218997 citedByCount "0" @default.
- W4311218997 crossrefType "posted-content" @default.
- W4311218997 hasAuthorship W4311218997A5007957123 @default.
- W4311218997 hasAuthorship W4311218997A5025797681 @default.
- W4311218997 hasAuthorship W4311218997A5031102018 @default.
- W4311218997 hasBestOaLocation W43112189971 @default.
- W4311218997 hasConcept C118552586 @default.
- W4311218997 hasConcept C126322002 @default.
- W4311218997 hasConcept C127413603 @default.
- W4311218997 hasConcept C134018914 @default.
- W4311218997 hasConcept C169900460 @default.
- W4311218997 hasConcept C1862650 @default.
- W4311218997 hasConcept C2778818304 @default.
- W4311218997 hasConcept C2779134260 @default.
- W4311218997 hasConcept C2780645631 @default.
- W4311218997 hasConcept C2984915365 @default.
- W4311218997 hasConcept C50440223 @default.
- W4311218997 hasConcept C555293320 @default.