Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311221122> ?p ?o ?g. }
- W4311221122 endingPage "103146" @default.
- W4311221122 startingPage "103146" @default.
- W4311221122 abstract "The resemblance of burnt areas with other bright features undermines the certainty of wildfire detection. Bare surfaces and water reflection mislead and directly affect the detection rate. As of now, burnt area characterization and detection of resembling bright features are confined to conventional approaches (change detection, machine learning techniques, semantic segmentation). Consequently, the presented research article established an innovative deep learning instance segmentation model ahead of semantic segmentation. Transfer learning is employed on the ResNet-50/101 as the backbone. For burnt area detection and segmentation, the best performance with deep learning reported in the literature was 98%. The proposed technique was trained using variant regions (datasets) and evaluated precision based on IOU threshold, F1-Score, kappa, recall, missed & detection rate, with an overall accuracy of 98.5%. The research work provides the accurate groundwork for the hybrid qualitative and comparative quantitative analysis among classifiers (U-Net Classifier), capsule-based segmentation models (SegCaps, BA_EnCaps), semantic segmentation models (PSPNET, DeepLabV3) keeping the backbone (ResNet-50) and hyperparameters configuration identical. The suggested model indicated that the instance segmentation deep learning approach outperforms primitive techniques by presenting a greater detection rate and segmentation accuracy. The research inferred that compared to primitive approaches, integration of bright and resemble feature detection support burnt area characterization that localizes and characterizes each smallest fragmented overlapped burnt area instance (feature part)." @default.
- W4311221122 created "2022-12-24" @default.
- W4311221122 creator A5018139552 @default.
- W4311221122 creator A5029760958 @default.
- W4311221122 creator A5046990686 @default.
- W4311221122 creator A5083627327 @default.
- W4311221122 creator A5084651957 @default.
- W4311221122 date "2023-02-01" @default.
- W4311221122 modified "2023-10-14" @default.
- W4311221122 title "Deep learning instance segmentation framework for burnt area instances characterization" @default.
- W4311221122 cites W1966272358 @default.
- W4311221122 cites W1985809628 @default.
- W4311221122 cites W2003206349 @default.
- W4311221122 cites W2017926030 @default.
- W4311221122 cites W2034516548 @default.
- W4311221122 cites W2095948312 @default.
- W4311221122 cites W2111256709 @default.
- W4311221122 cites W2126453957 @default.
- W4311221122 cites W2138268265 @default.
- W4311221122 cites W2194775991 @default.
- W4311221122 cites W2536208356 @default.
- W4311221122 cites W2554685724 @default.
- W4311221122 cites W2613575128 @default.
- W4311221122 cites W2735654840 @default.
- W4311221122 cites W2792318059 @default.
- W4311221122 cites W2799675047 @default.
- W4311221122 cites W2884851559 @default.
- W4311221122 cites W2901388191 @default.
- W4311221122 cites W2908320224 @default.
- W4311221122 cites W2913160612 @default.
- W4311221122 cites W2914699052 @default.
- W4311221122 cites W2939571759 @default.
- W4311221122 cites W2946153684 @default.
- W4311221122 cites W2948500087 @default.
- W4311221122 cites W2962766617 @default.
- W4311221122 cites W2963150697 @default.
- W4311221122 cites W2975479989 @default.
- W4311221122 cites W3003452346 @default.
- W4311221122 cites W3007268491 @default.
- W4311221122 cites W3017198067 @default.
- W4311221122 cites W3045606376 @default.
- W4311221122 cites W3045982802 @default.
- W4311221122 cites W3088603129 @default.
- W4311221122 cites W3148703355 @default.
- W4311221122 cites W3158505286 @default.
- W4311221122 cites W3167877227 @default.
- W4311221122 cites W3176110204 @default.
- W4311221122 cites W3191541977 @default.
- W4311221122 cites W3196908521 @default.
- W4311221122 cites W3205657035 @default.
- W4311221122 cites W3214021476 @default.
- W4311221122 cites W4206043725 @default.
- W4311221122 cites W4225872341 @default.
- W4311221122 cites W4280592903 @default.
- W4311221122 cites W4281393096 @default.
- W4311221122 cites W4283831127 @default.
- W4311221122 cites W4294676509 @default.
- W4311221122 doi "https://doi.org/10.1016/j.jag.2022.103146" @default.
- W4311221122 hasPublicationYear "2023" @default.
- W4311221122 type Work @default.
- W4311221122 citedByCount "0" @default.
- W4311221122 crossrefType "journal-article" @default.
- W4311221122 hasAuthorship W4311221122A5018139552 @default.
- W4311221122 hasAuthorship W4311221122A5029760958 @default.
- W4311221122 hasAuthorship W4311221122A5046990686 @default.
- W4311221122 hasAuthorship W4311221122A5083627327 @default.
- W4311221122 hasAuthorship W4311221122A5084651957 @default.
- W4311221122 hasBestOaLocation W43112211221 @default.
- W4311221122 hasConcept C108583219 @default.
- W4311221122 hasConcept C119857082 @default.
- W4311221122 hasConcept C153180895 @default.
- W4311221122 hasConcept C154945302 @default.
- W4311221122 hasConcept C41008148 @default.
- W4311221122 hasConcept C8642999 @default.
- W4311221122 hasConcept C89600930 @default.
- W4311221122 hasConcept C95623464 @default.
- W4311221122 hasConceptScore W4311221122C108583219 @default.
- W4311221122 hasConceptScore W4311221122C119857082 @default.
- W4311221122 hasConceptScore W4311221122C153180895 @default.
- W4311221122 hasConceptScore W4311221122C154945302 @default.
- W4311221122 hasConceptScore W4311221122C41008148 @default.
- W4311221122 hasConceptScore W4311221122C8642999 @default.
- W4311221122 hasConceptScore W4311221122C89600930 @default.
- W4311221122 hasConceptScore W4311221122C95623464 @default.
- W4311221122 hasLocation W43112211221 @default.
- W4311221122 hasOpenAccess W4311221122 @default.
- W4311221122 hasPrimaryLocation W43112211221 @default.
- W4311221122 hasRelatedWork W2790662084 @default.
- W4311221122 hasRelatedWork W3047644063 @default.
- W4311221122 hasRelatedWork W4210794429 @default.
- W4311221122 hasRelatedWork W4223943233 @default.
- W4311221122 hasRelatedWork W4295309597 @default.
- W4311221122 hasRelatedWork W4312200629 @default.
- W4311221122 hasRelatedWork W4360585206 @default.
- W4311221122 hasRelatedWork W4364306694 @default.
- W4311221122 hasRelatedWork W4380075502 @default.
- W4311221122 hasRelatedWork W4380086463 @default.
- W4311221122 hasVolume "116" @default.