Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311232320> ?p ?o ?g. }
- W4311232320 endingPage "1204" @default.
- W4311232320 startingPage "1204" @default.
- W4311232320 abstract "A framework aimed to improve the bearing-fault diagnosis accuracy using a hybrid feature-selection method based on Wrapper-WPT is proposed in this paper. In the first step, the envelope vibration signal of the roller bearing is provided to the Wrapper-WPT. There, it is initially decomposed into several sub-bands using Wavelet Packet Transform (WPT), and a set out of nineteen time and frequency domain features are individually extracted from each sub-band of the decomposed vibration signal forming a wide feature pool. In the following step, Wrapper-WPT constructs a final feature vector using the Boruta algorithm, which selects the most discriminant features from the wide feature pool based on the important metric obtained from the Random Forest classifier. Finally, Subspace k-NN is used to identify the health conditions of the bearing, thus forming a hybrid signal processing and machine learning-based model for bearing fault diagnosis. In comparison with other state-of-the-art methods, the proposed method showed higher classification performance on two different bearing-benchmark vibration datasets with variable operating conditions." @default.
- W4311232320 created "2022-12-24" @default.
- W4311232320 creator A5026778303 @default.
- W4311232320 creator A5045373987 @default.
- W4311232320 creator A5074001543 @default.
- W4311232320 date "2022-12-12" @default.
- W4311232320 modified "2023-10-14" @default.
- W4311232320 title "Hybrid Feature Selection Framework for Bearing Fault Diagnosis Based on Wrapper-WPT" @default.
- W4311232320 cites W1964511482 @default.
- W4311232320 cites W1985353764 @default.
- W4311232320 cites W2027764190 @default.
- W4311232320 cites W2072538604 @default.
- W4311232320 cites W2084327714 @default.
- W4311232320 cites W2122111042 @default.
- W4311232320 cites W2156665896 @default.
- W4311232320 cites W2583168084 @default.
- W4311232320 cites W2762355244 @default.
- W4311232320 cites W2767234670 @default.
- W4311232320 cites W2883085683 @default.
- W4311232320 cites W2888337213 @default.
- W4311232320 cites W2888400328 @default.
- W4311232320 cites W2901167944 @default.
- W4311232320 cites W2910652383 @default.
- W4311232320 cites W2922660557 @default.
- W4311232320 cites W2945498092 @default.
- W4311232320 cites W2947160970 @default.
- W4311232320 cites W2949808003 @default.
- W4311232320 cites W2954709958 @default.
- W4311232320 cites W2959082036 @default.
- W4311232320 cites W2965625921 @default.
- W4311232320 cites W2965761706 @default.
- W4311232320 cites W2972036131 @default.
- W4311232320 cites W2988127080 @default.
- W4311232320 cites W3001026088 @default.
- W4311232320 cites W3050189551 @default.
- W4311232320 cites W3082542612 @default.
- W4311232320 cites W3084473474 @default.
- W4311232320 cites W3095698707 @default.
- W4311232320 cites W3114442342 @default.
- W4311232320 cites W3118313511 @default.
- W4311232320 cites W3119558728 @default.
- W4311232320 cites W3121079990 @default.
- W4311232320 cites W3127669014 @default.
- W4311232320 cites W3136854387 @default.
- W4311232320 cites W3150857133 @default.
- W4311232320 cites W3166506493 @default.
- W4311232320 cites W3184682776 @default.
- W4311232320 cites W3185546998 @default.
- W4311232320 cites W3198237872 @default.
- W4311232320 cites W3202586029 @default.
- W4311232320 cites W3212445966 @default.
- W4311232320 cites W4200045774 @default.
- W4311232320 cites W4210372062 @default.
- W4311232320 cites W4210683820 @default.
- W4311232320 cites W4224072845 @default.
- W4311232320 cites W4231529079 @default.
- W4311232320 cites W4235594362 @default.
- W4311232320 cites W4238891638 @default.
- W4311232320 cites W4285676265 @default.
- W4311232320 cites W4295592549 @default.
- W4311232320 cites W4296830742 @default.
- W4311232320 cites W4303474632 @default.
- W4311232320 cites W4304585353 @default.
- W4311232320 doi "https://doi.org/10.3390/machines10121204" @default.
- W4311232320 hasPublicationYear "2022" @default.
- W4311232320 type Work @default.
- W4311232320 citedByCount "2" @default.
- W4311232320 countsByYear W43112323202023 @default.
- W4311232320 crossrefType "journal-article" @default.
- W4311232320 hasAuthorship W4311232320A5026778303 @default.
- W4311232320 hasAuthorship W4311232320A5045373987 @default.
- W4311232320 hasAuthorship W4311232320A5074001543 @default.
- W4311232320 hasBestOaLocation W43112323201 @default.
- W4311232320 hasConcept C121332964 @default.
- W4311232320 hasConcept C12267149 @default.
- W4311232320 hasConcept C124101348 @default.
- W4311232320 hasConcept C127413603 @default.
- W4311232320 hasConcept C13280743 @default.
- W4311232320 hasConcept C148483581 @default.
- W4311232320 hasConcept C153180895 @default.
- W4311232320 hasConcept C154945302 @default.
- W4311232320 hasConcept C155777637 @default.
- W4311232320 hasConcept C169258074 @default.
- W4311232320 hasConcept C185798385 @default.
- W4311232320 hasConcept C196216189 @default.
- W4311232320 hasConcept C198394728 @default.
- W4311232320 hasConcept C199978012 @default.
- W4311232320 hasConcept C205649164 @default.
- W4311232320 hasConcept C24890656 @default.
- W4311232320 hasConcept C41008148 @default.
- W4311232320 hasConcept C47432892 @default.
- W4311232320 hasConcept C52622490 @default.
- W4311232320 hasConcept C95623464 @default.
- W4311232320 hasConceptScore W4311232320C121332964 @default.
- W4311232320 hasConceptScore W4311232320C12267149 @default.
- W4311232320 hasConceptScore W4311232320C124101348 @default.
- W4311232320 hasConceptScore W4311232320C127413603 @default.
- W4311232320 hasConceptScore W4311232320C13280743 @default.