Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311303732> ?p ?o ?g. }
- W4311303732 abstract "Abstract While a number of low-frequency genetic variants of large effect size have been shown to underlie both cardiovascular disease and dementia, recent studies have highlighted the importance of common genetic variants of small effect size, which, in aggregate, are embodied by a polygenic risk score. We investigate the effect of polygenic risk for coronary artery disease on brain atrophy in Alzheimer’s disease using whole-brain volume and put our findings in context with the polygenic risk for Alzheimer’s disease and presumed small vessel disease as quantified by white-matter hyperintensities. We use 730 subjects from the Alzheimer’s disease neuroimaging initiative database to investigate polygenic risk score effects (beyond APOE) on whole-brain volumes, total and regional white-matter hyperintensities and amyloid beta across diagnostic groups. In a subset of these subjects (N = 602), we utilized longitudinal changes in whole-brain volume over 24 months using the boundary shift integral approach. Linear regression and linear mixed-effects models were used to investigate the effect of white-matter hyperintensities at baseline as well as Alzheimer’s disease-polygenic risk score and coronary artery disease-polygenic risk score on whole-brain atrophy and whole-brain atrophy acceleration, respectively. All genetic associations were examined under the oligogenic (P = 1e-5) and the more variant-inclusive polygenic (P = 0.5) scenarios. Results suggest no evidence for a link between the polygenic risk score and markers of Alzheimer’s disease pathology at baseline (when stratified by diagnostic group). However, both Alzheimer’s disease-polygenic risk score and coronary artery disease-polygenic risk score were associated with longitudinal decline in whole-brain volume (Alzheimer’s disease-polygenic risk score t = 3.3, PFDR = 0.007 over 24 months in healthy controls) and surprisingly, under certain conditions, whole-brain volume atrophy is statistically more correlated with cardiac polygenic risk score than Alzheimer’s disease-polygenic risk score (coronary artery disease-polygenic risk score t = 2.1, PFDR = 0.04 over 24 months in the mild cognitive impairment group). Further, in our regional analysis of white-matter hyperintensities, Alzheimer’s disease-polygenic risk score beyond APOE is predictive of white-matter volume in the occipital lobe in Alzheimer’s disease subjects in the polygenic regime. Finally, the rate of change of brain volume (or atrophy acceleration) may be sensitive to Alzheimer’s disease-polygenic risk beyond APOE in healthy individuals (t = 2, P = 0.04). For subjects with mild cognitive impairment, beyond APOE, a more inclusive polygenic risk score including more variants, shows coronary artery disease-polygenic risk score to be more predictive of whole-brain volume atrophy, than an oligogenic approach including fewer larger effect size variants." @default.
- W4311303732 created "2022-12-25" @default.
- W4311303732 creator A5007836718 @default.
- W4311303732 creator A5010855166 @default.
- W4311303732 creator A5058543475 @default.
- W4311303732 creator A5069743881 @default.
- W4311303732 creator A5075460241 @default.
- W4311303732 date "2022-11-02" @default.
- W4311303732 modified "2023-10-08" @default.
- W4311303732 title "Polygenic coronary artery disease association with brain atrophy in the cognitively impaired" @default.
- W4311303732 cites W1742534546 @default.
- W4311303732 cites W2024713473 @default.
- W4311303732 cites W2037426713 @default.
- W4311303732 cites W2040810382 @default.
- W4311303732 cites W2047641191 @default.
- W4311303732 cites W2054422278 @default.
- W4311303732 cites W2057164916 @default.
- W4311303732 cites W2091753181 @default.
- W4311303732 cites W2098597355 @default.
- W4311303732 cites W2099085143 @default.
- W4311303732 cites W2107199945 @default.
- W4311303732 cites W2119000771 @default.
- W4311303732 cites W2129598810 @default.
- W4311303732 cites W2133185939 @default.
- W4311303732 cites W2149128281 @default.
- W4311303732 cites W2166336042 @default.
- W4311303732 cites W2168103648 @default.
- W4311303732 cites W2171051269 @default.
- W4311303732 cites W2193207784 @default.
- W4311303732 cites W2238851414 @default.
- W4311303732 cites W2239438536 @default.
- W4311303732 cites W2289147497 @default.
- W4311303732 cites W2461189143 @default.
- W4311303732 cites W2559526259 @default.
- W4311303732 cites W2561751661 @default.
- W4311303732 cites W2596674235 @default.
- W4311303732 cites W2597132418 @default.
- W4311303732 cites W2739334724 @default.
- W4311303732 cites W2786084903 @default.
- W4311303732 cites W2794980823 @default.
- W4311303732 cites W2802278070 @default.
- W4311303732 cites W2808600489 @default.
- W4311303732 cites W2886752110 @default.
- W4311303732 cites W2916749909 @default.
- W4311303732 cites W2921488952 @default.
- W4311303732 cites W2922738555 @default.
- W4311303732 cites W2924245174 @default.
- W4311303732 cites W2936535041 @default.
- W4311303732 cites W2945720997 @default.
- W4311303732 cites W2948816384 @default.
- W4311303732 cites W2950577582 @default.
- W4311303732 cites W2951468689 @default.
- W4311303732 cites W2951690265 @default.
- W4311303732 cites W2958615822 @default.
- W4311303732 cites W2990723317 @default.
- W4311303732 cites W2995148895 @default.
- W4311303732 cites W2995513418 @default.
- W4311303732 cites W2997847443 @default.
- W4311303732 cites W3012189434 @default.
- W4311303732 cites W3021377915 @default.
- W4311303732 cites W3036920839 @default.
- W4311303732 cites W3048963803 @default.
- W4311303732 cites W3080612738 @default.
- W4311303732 cites W3083195323 @default.
- W4311303732 cites W3088472215 @default.
- W4311303732 cites W3091625250 @default.
- W4311303732 cites W3112948680 @default.
- W4311303732 cites W3166254219 @default.
- W4311303732 cites W3197290161 @default.
- W4311303732 cites W4211139529 @default.
- W4311303732 doi "https://doi.org/10.1093/braincomms/fcac314" @default.
- W4311303732 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36523268" @default.
- W4311303732 hasPublicationYear "2022" @default.
- W4311303732 type Work @default.
- W4311303732 citedByCount "0" @default.
- W4311303732 crossrefType "journal-article" @default.
- W4311303732 hasAuthorship W4311303732A5007836718 @default.
- W4311303732 hasAuthorship W4311303732A5010855166 @default.
- W4311303732 hasAuthorship W4311303732A5058543475 @default.
- W4311303732 hasAuthorship W4311303732A5069743881 @default.
- W4311303732 hasAuthorship W4311303732A5075460241 @default.
- W4311303732 hasBestOaLocation W43113037321 @default.
- W4311303732 hasConcept C118552586 @default.
- W4311303732 hasConcept C126322002 @default.
- W4311303732 hasConcept C126838900 @default.
- W4311303732 hasConcept C143409427 @default.
- W4311303732 hasConcept C146638467 @default.
- W4311303732 hasConcept C151730666 @default.
- W4311303732 hasConcept C164705383 @default.
- W4311303732 hasConcept C2778373026 @default.
- W4311303732 hasConcept C2779134260 @default.
- W4311303732 hasConcept C2779343474 @default.
- W4311303732 hasConcept C2779483572 @default.
- W4311303732 hasConcept C2781172350 @default.
- W4311303732 hasConcept C2781192897 @default.
- W4311303732 hasConcept C58693492 @default.
- W4311303732 hasConcept C65835030 @default.
- W4311303732 hasConcept C71924100 @default.
- W4311303732 hasConcept C86803240 @default.
- W4311303732 hasConceptScore W4311303732C118552586 @default.