Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311304944> ?p ?o ?g. }
- W4311304944 endingPage "718" @default.
- W4311304944 startingPage "703" @default.
- W4311304944 abstract "Abstract Background Assignments that involve writing based on several texts are challenging to many learners. Formative feedback supporting learners in these tasks should be informed by the characteristics of evolving written product and by the characteristics of learning processes learners enacted while developing the product. However, formative feedback in writing tasks based on multiple texts has almost exclusively focused on essay product and rarely included SRL processes. Objectives We explored the viability of using product and process features to develop machine learning classifiers that identify low‐ and high‐performing essays in a multi‐text writing task. Methods We examined learning processes and essay submissions of 163 graduate students working on an authentic multi‐text writing assignment. We utilised learners' trace data to obtain process features and state‐of‐the‐art natural language processing methods to obtain product features for our classifiers. Results and Conclusions Of four popular classifiers examined in this study, Random Forest achieved the best performance (accuracy = 0.80 and recall = 0.77). The analysis of important features identified in the Random Forest classification model revealed one product (coverage of reading topics) and three process (elaboration/organisation, re‐reading and planning) features as important predictors of writing quality. Major Takeaways The classifier can be used as a part of a future automated writing evaluation system that will support at scale formative assessment in writing tasks based on multiple texts in different courses. Based on important predictors of essay performance, a guidance can be tailored to learners at the outset of a multi‐text writing task to help them do well in the task." @default.
- W4311304944 created "2022-12-25" @default.
- W4311304944 creator A5006305255 @default.
- W4311304944 creator A5007836281 @default.
- W4311304944 creator A5025536060 @default.
- W4311304944 creator A5031400973 @default.
- W4311304944 creator A5033101487 @default.
- W4311304944 creator A5036855560 @default.
- W4311304944 creator A5037990414 @default.
- W4311304944 creator A5041627722 @default.
- W4311304944 creator A5041705232 @default.
- W4311304944 creator A5045198234 @default.
- W4311304944 creator A5052257833 @default.
- W4311304944 creator A5055684916 @default.
- W4311304944 creator A5085040048 @default.
- W4311304944 date "2022-12-13" @default.
- W4311304944 modified "2023-10-10" @default.
- W4311304944 title "Harnessing the potential of trace data and linguistic analysis to predict learner performance in a multi‐text writing task" @default.
- W4311304944 cites W1202334929 @default.
- W4311304944 cites W12368943 @default.
- W4311304944 cites W1491994726 @default.
- W4311304944 cites W1678356000 @default.
- W4311304944 cites W1831050183 @default.
- W4311304944 cites W1964940342 @default.
- W4311304944 cites W1988879642 @default.
- W4311304944 cites W1998170614 @default.
- W4311304944 cites W1998862210 @default.
- W4311304944 cites W2000061912 @default.
- W4311304944 cites W2040925041 @default.
- W4311304944 cites W2044722804 @default.
- W4311304944 cites W2050736185 @default.
- W4311304944 cites W2053589848 @default.
- W4311304944 cites W2060993471 @default.
- W4311304944 cites W2063788304 @default.
- W4311304944 cites W2069916046 @default.
- W4311304944 cites W2085187966 @default.
- W4311304944 cites W2095907159 @default.
- W4311304944 cites W2102900027 @default.
- W4311304944 cites W2106695994 @default.
- W4311304944 cites W2141766660 @default.
- W4311304944 cites W2141847481 @default.
- W4311304944 cites W2149497228 @default.
- W4311304944 cites W2151986074 @default.
- W4311304944 cites W2158997610 @default.
- W4311304944 cites W2251329024 @default.
- W4311304944 cites W2275395708 @default.
- W4311304944 cites W2293781730 @default.
- W4311304944 cites W2333138385 @default.
- W4311304944 cites W2336367597 @default.
- W4311304944 cites W2336434745 @default.
- W4311304944 cites W2343649478 @default.
- W4311304944 cites W2414331059 @default.
- W4311304944 cites W2463193765 @default.
- W4311304944 cites W2477917057 @default.
- W4311304944 cites W2498119267 @default.
- W4311304944 cites W2516588439 @default.
- W4311304944 cites W2586120904 @default.
- W4311304944 cites W2668506044 @default.
- W4311304944 cites W2740382415 @default.
- W4311304944 cites W2796592849 @default.
- W4311304944 cites W2803680442 @default.
- W4311304944 cites W2804537146 @default.
- W4311304944 cites W2911964244 @default.
- W4311304944 cites W2913961159 @default.
- W4311304944 cites W2914319254 @default.
- W4311304944 cites W2942629971 @default.
- W4311304944 cites W2997020034 @default.
- W4311304944 cites W2997152227 @default.
- W4311304944 cites W3010462311 @default.
- W4311304944 cites W3024117512 @default.
- W4311304944 cites W3030235465 @default.
- W4311304944 cites W3033601069 @default.
- W4311304944 cites W3033678760 @default.
- W4311304944 cites W3090254665 @default.
- W4311304944 cites W3093406715 @default.
- W4311304944 cites W3093831642 @default.
- W4311304944 cites W3100900397 @default.
- W4311304944 cites W3203071839 @default.
- W4311304944 cites W4214834528 @default.
- W4311304944 cites W564843537 @default.
- W4311304944 cites W595197191 @default.
- W4311304944 doi "https://doi.org/10.1111/jcal.12769" @default.
- W4311304944 hasPublicationYear "2022" @default.
- W4311304944 type Work @default.
- W4311304944 citedByCount "1" @default.
- W4311304944 countsByYear W43113049442023 @default.
- W4311304944 crossrefType "journal-article" @default.
- W4311304944 hasAuthorship W4311304944A5006305255 @default.
- W4311304944 hasAuthorship W4311304944A5007836281 @default.
- W4311304944 hasAuthorship W4311304944A5025536060 @default.
- W4311304944 hasAuthorship W4311304944A5031400973 @default.
- W4311304944 hasAuthorship W4311304944A5033101487 @default.
- W4311304944 hasAuthorship W4311304944A5036855560 @default.
- W4311304944 hasAuthorship W4311304944A5037990414 @default.
- W4311304944 hasAuthorship W4311304944A5041627722 @default.
- W4311304944 hasAuthorship W4311304944A5041705232 @default.
- W4311304944 hasAuthorship W4311304944A5045198234 @default.
- W4311304944 hasAuthorship W4311304944A5052257833 @default.