Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311305969> ?p ?o ?g. }
- W4311305969 abstract "Long-read shotgun metagenomic sequencing is gaining in popularity and offers many advantages over short-read sequencing. The higher information content in long reads is useful for a variety of metagenomics analyses, including taxonomic classification and profiling. The development of long-read specific tools for taxonomic classification is accelerating, yet there is a lack of information regarding their relative performance. Here, we perform a critical benchmarking study using 11 methods, including five methods designed specifically for long reads. We applied these tools to several mock community datasets generated using Pacific Biosciences (PacBio) HiFi or Oxford Nanopore Technology sequencing, and evaluated their performance based on read utilization, detection metrics, and relative abundance estimates.Our results show that long-read classifiers generally performed best. Several short-read classification and profiling methods produced many false positives (particularly at lower abundances), required heavy filtering to achieve acceptable precision (at the cost of reduced recall), and produced inaccurate abundance estimates. By contrast, two long-read methods (BugSeq, MEGAN-LR & DIAMOND) and one generalized method (sourmash) displayed high precision and recall without any filtering required. Furthermore, in the PacBio HiFi datasets these methods detected all species down to the 0.1% abundance level with high precision. Some long-read methods, such as MetaMaps and MMseqs2, required moderate filtering to reduce false positives to resemble the precision and recall of the top-performing methods. We found read quality affected performance for methods relying on protein prediction or exact k-mer matching, and these methods performed better with PacBio HiFi datasets. We also found that long-read datasets with a large proportion of shorter reads (< 2 kb length) resulted in lower precision and worse abundance estimates, relative to length-filtered datasets. Finally, for classification methods, we found that the long-read datasets produced significantly better results than short-read datasets, demonstrating clear advantages for long-read metagenomic sequencing.Our critical assessment of available methods provides best-practice recommendations for current research using long reads and establishes a baseline for future benchmarking studies." @default.
- W4311305969 created "2022-12-25" @default.
- W4311305969 creator A5036229691 @default.
- W4311305969 creator A5073893845 @default.
- W4311305969 creator A5081119038 @default.
- W4311305969 date "2022-12-13" @default.
- W4311305969 modified "2023-10-17" @default.
- W4311305969 title "Evaluation of taxonomic classification and profiling methods for long-read shotgun metagenomic sequencing datasets" @default.
- W4311305969 cites W2045204781 @default.
- W4311305969 cites W2159954944 @default.
- W4311305969 cites W2282583203 @default.
- W4311305969 cites W2345658906 @default.
- W4311305969 cites W2465681871 @default.
- W4311305969 cites W2519890620 @default.
- W4311305969 cites W2758005814 @default.
- W4311305969 cites W2773939681 @default.
- W4311305969 cites W2789843538 @default.
- W4311305969 cites W2885972398 @default.
- W4311305969 cites W2908149669 @default.
- W4311305969 cites W2920716817 @default.
- W4311305969 cites W2949968272 @default.
- W4311305969 cites W2950671516 @default.
- W4311305969 cites W2951160681 @default.
- W4311305969 cites W2951176108 @default.
- W4311305969 cites W2951278111 @default.
- W4311305969 cites W2951676949 @default.
- W4311305969 cites W2952152744 @default.
- W4311305969 cites W2955167895 @default.
- W4311305969 cites W2958388979 @default.
- W4311305969 cites W2968450569 @default.
- W4311305969 cites W2968499116 @default.
- W4311305969 cites W2990618091 @default.
- W4311305969 cites W2996645820 @default.
- W4311305969 cites W3011982747 @default.
- W4311305969 cites W3031621849 @default.
- W4311305969 cites W3032367065 @default.
- W4311305969 cites W3108225425 @default.
- W4311305969 cites W3137047737 @default.
- W4311305969 cites W3138971169 @default.
- W4311305969 cites W3156763462 @default.
- W4311305969 cites W3159504416 @default.
- W4311305969 cites W4206102744 @default.
- W4311305969 cites W4225258284 @default.
- W4311305969 cites W4307033441 @default.
- W4311305969 doi "https://doi.org/10.1186/s12859-022-05103-0" @default.
- W4311305969 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36513983" @default.
- W4311305969 hasPublicationYear "2022" @default.
- W4311305969 type Work @default.
- W4311305969 citedByCount "8" @default.
- W4311305969 countsByYear W43113059692022 @default.
- W4311305969 countsByYear W43113059692023 @default.
- W4311305969 crossrefType "journal-article" @default.
- W4311305969 hasAuthorship W4311305969A5036229691 @default.
- W4311305969 hasAuthorship W4311305969A5073893845 @default.
- W4311305969 hasAuthorship W4311305969A5081119038 @default.
- W4311305969 hasBestOaLocation W43113059691 @default.
- W4311305969 hasConcept C101985253 @default.
- W4311305969 hasConcept C104317684 @default.
- W4311305969 hasConcept C111919701 @default.
- W4311305969 hasConcept C119857082 @default.
- W4311305969 hasConcept C124101348 @default.
- W4311305969 hasConcept C144133560 @default.
- W4311305969 hasConcept C15151743 @default.
- W4311305969 hasConcept C153180895 @default.
- W4311305969 hasConcept C154945302 @default.
- W4311305969 hasConcept C162853370 @default.
- W4311305969 hasConcept C187191949 @default.
- W4311305969 hasConcept C41008148 @default.
- W4311305969 hasConcept C51679486 @default.
- W4311305969 hasConcept C54355233 @default.
- W4311305969 hasConcept C552990157 @default.
- W4311305969 hasConcept C55493867 @default.
- W4311305969 hasConcept C64869954 @default.
- W4311305969 hasConcept C70721500 @default.
- W4311305969 hasConcept C81669768 @default.
- W4311305969 hasConcept C86251818 @default.
- W4311305969 hasConcept C86803240 @default.
- W4311305969 hasConceptScore W4311305969C101985253 @default.
- W4311305969 hasConceptScore W4311305969C104317684 @default.
- W4311305969 hasConceptScore W4311305969C111919701 @default.
- W4311305969 hasConceptScore W4311305969C119857082 @default.
- W4311305969 hasConceptScore W4311305969C124101348 @default.
- W4311305969 hasConceptScore W4311305969C144133560 @default.
- W4311305969 hasConceptScore W4311305969C15151743 @default.
- W4311305969 hasConceptScore W4311305969C153180895 @default.
- W4311305969 hasConceptScore W4311305969C154945302 @default.
- W4311305969 hasConceptScore W4311305969C162853370 @default.
- W4311305969 hasConceptScore W4311305969C187191949 @default.
- W4311305969 hasConceptScore W4311305969C41008148 @default.
- W4311305969 hasConceptScore W4311305969C51679486 @default.
- W4311305969 hasConceptScore W4311305969C54355233 @default.
- W4311305969 hasConceptScore W4311305969C552990157 @default.
- W4311305969 hasConceptScore W4311305969C55493867 @default.
- W4311305969 hasConceptScore W4311305969C64869954 @default.
- W4311305969 hasConceptScore W4311305969C70721500 @default.
- W4311305969 hasConceptScore W4311305969C81669768 @default.
- W4311305969 hasConceptScore W4311305969C86251818 @default.
- W4311305969 hasConceptScore W4311305969C86803240 @default.
- W4311305969 hasIssue "1" @default.
- W4311305969 hasLocation W43113059691 @default.