Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311306009> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4311306009 abstract "Sentiment analysis is a process in Natural Language Processing that involves detecting and classifying emotions in texts. The emotion is focused on a specific thing, an object, an incident, or an individual. Although some tasks are concerned with detecting the existence of emotion in text, others are concerned with finding the polarities of the text, which is classified as positive, negative, or neutral. The task of determining whether a comment contains inappropriate text that affects either individual or group is called offensive language identification. The existing research has concentrated more on sentiment analysis and offensive language identification in a monolingual data set than code-mixed data. Code-mixed data is framed by combining words and phrases from two or more distinct languages in a single text. It is quite challenging to identify emotion or offensive terms in the comments since noise exists in code-mixed data. The majority of advancements in hostile language detection and sentiment analysis are made on monolingual data for languages with high resource requirements. The proposed system attempts to perform both sentiment analysis and offensive language identification for low resource code-mixed data in Tamil and English using machine learning, deep learning and pre-trained models like BERT, RoBERTa and adapter-BERT. The dataset utilized for this research work is taken from a shared task on Multi task learning DravidianLangTech@ACL2022. Another challenge addressed by this work is the extraction of semantically meaningful information from code-mixed data using word embedding. The result represents an adapter-BERT model gives a better accuracy of 65% for sentiment analysis and 79% for offensive language identification when compared with other trained models." @default.
- W4311306009 created "2022-12-25" @default.
- W4311306009 creator A5018711892 @default.
- W4311306009 creator A5022936577 @default.
- W4311306009 creator A5033711346 @default.
- W4311306009 creator A5036753207 @default.
- W4311306009 creator A5040006660 @default.
- W4311306009 creator A5040688532 @default.
- W4311306009 date "2022-12-13" @default.
- W4311306009 modified "2023-10-10" @default.
- W4311306009 title "Deep learning based sentiment analysis and offensive language identification on multilingual code-mixed data" @default.
- W4311306009 cites W2306941105 @default.
- W4311306009 cites W2892137778 @default.
- W4311306009 cites W2912723748 @default.
- W4311306009 cites W2966027762 @default.
- W4311306009 cites W3031696893 @default.
- W4311306009 cites W3126113954 @default.
- W4311306009 cites W3139112046 @default.
- W4311306009 cites W3172053684 @default.
- W4311306009 cites W3187767516 @default.
- W4311306009 cites W4210579724 @default.
- W4311306009 cites W4224860708 @default.
- W4311306009 cites W4225012186 @default.
- W4311306009 cites W4225705554 @default.
- W4311306009 cites W4281783552 @default.
- W4311306009 cites W4294982692 @default.
- W4311306009 cites W4310609402 @default.
- W4311306009 doi "https://doi.org/10.1038/s41598-022-26092-3" @default.
- W4311306009 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36513786" @default.
- W4311306009 hasPublicationYear "2022" @default.
- W4311306009 type Work @default.
- W4311306009 citedByCount "3" @default.
- W4311306009 countsByYear W43113060092023 @default.
- W4311306009 crossrefType "journal-article" @default.
- W4311306009 hasAuthorship W4311306009A5018711892 @default.
- W4311306009 hasAuthorship W4311306009A5022936577 @default.
- W4311306009 hasAuthorship W4311306009A5033711346 @default.
- W4311306009 hasAuthorship W4311306009A5036753207 @default.
- W4311306009 hasAuthorship W4311306009A5040006660 @default.
- W4311306009 hasAuthorship W4311306009A5040688532 @default.
- W4311306009 hasBestOaLocation W43113060091 @default.
- W4311306009 hasConcept C116834253 @default.
- W4311306009 hasConcept C129792486 @default.
- W4311306009 hasConcept C154945302 @default.
- W4311306009 hasConcept C162324750 @default.
- W4311306009 hasConcept C176856949 @default.
- W4311306009 hasConcept C177264268 @default.
- W4311306009 hasConcept C187736073 @default.
- W4311306009 hasConcept C195324797 @default.
- W4311306009 hasConcept C199360897 @default.
- W4311306009 hasConcept C204321447 @default.
- W4311306009 hasConcept C2776760102 @default.
- W4311306009 hasConcept C2780451532 @default.
- W4311306009 hasConcept C41008148 @default.
- W4311306009 hasConcept C59822182 @default.
- W4311306009 hasConcept C66402592 @default.
- W4311306009 hasConcept C86803240 @default.
- W4311306009 hasConceptScore W4311306009C116834253 @default.
- W4311306009 hasConceptScore W4311306009C129792486 @default.
- W4311306009 hasConceptScore W4311306009C154945302 @default.
- W4311306009 hasConceptScore W4311306009C162324750 @default.
- W4311306009 hasConceptScore W4311306009C176856949 @default.
- W4311306009 hasConceptScore W4311306009C177264268 @default.
- W4311306009 hasConceptScore W4311306009C187736073 @default.
- W4311306009 hasConceptScore W4311306009C195324797 @default.
- W4311306009 hasConceptScore W4311306009C199360897 @default.
- W4311306009 hasConceptScore W4311306009C204321447 @default.
- W4311306009 hasConceptScore W4311306009C2776760102 @default.
- W4311306009 hasConceptScore W4311306009C2780451532 @default.
- W4311306009 hasConceptScore W4311306009C41008148 @default.
- W4311306009 hasConceptScore W4311306009C59822182 @default.
- W4311306009 hasConceptScore W4311306009C66402592 @default.
- W4311306009 hasConceptScore W4311306009C86803240 @default.
- W4311306009 hasIssue "1" @default.
- W4311306009 hasLocation W43113060091 @default.
- W4311306009 hasLocation W43113060092 @default.
- W4311306009 hasLocation W43113060093 @default.
- W4311306009 hasLocation W43113060094 @default.
- W4311306009 hasOpenAccess W4311306009 @default.
- W4311306009 hasPrimaryLocation W43113060091 @default.
- W4311306009 hasRelatedWork W226586525 @default.
- W4311306009 hasRelatedWork W2922580172 @default.
- W4311306009 hasRelatedWork W2954686863 @default.
- W4311306009 hasRelatedWork W3081866152 @default.
- W4311306009 hasRelatedWork W3116942019 @default.
- W4311306009 hasRelatedWork W3117476642 @default.
- W4311306009 hasRelatedWork W4225370027 @default.
- W4311306009 hasRelatedWork W4287674457 @default.
- W4311306009 hasRelatedWork W4288058464 @default.
- W4311306009 hasRelatedWork W4288413317 @default.
- W4311306009 hasVolume "12" @default.
- W4311306009 isParatext "false" @default.
- W4311306009 isRetracted "false" @default.
- W4311306009 workType "article" @default.